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Temporal fluctuations of waves in weakly nonlinear disordered media
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We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of
Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered
wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a
certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous
fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the
system “coherent wave- nonlinear disordered medium.” The feedback is provided by the multiple scattering.
The development of instability is independent of the sign of nonlinearity.
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[. INTRODUCTION in a disordered, multiple-scattering medium undergoes a
large number of scattering events, and hence the scattered
Scattering of waves in disordered media has proved to batensity is highly sensitive to displacements of scatterers
a nontrivial topic possessing intriguing and still not com-[15-17. Consequently, the decay of the intensity autocorre-
pletely understood feature§l—5]. Accordingly to the lation function Cg/(r,7)=(d8l(r,t)5l(r,t+ 7)) is consider-
strength of disorder, one observes a variety of propagatioably faster than in the single-scattering c4$8—-20. Re-
regimes ranging from ballistic transport, through single scatcently, long-range autocorrelation function of intensity
tering and wave diffusion, to the Anderson localization. Influctuations has been measuf@d], and the existence of the
this paper we are interested in the regime of wave diffusionuniversal conductance fluctuatiof@nalogous to that in dis-
corresponding to a relatively strong disorder, which is, how-ordered conductoyshas been demonstratéd2] for optical
ever, still largely insufficient to bring the system to the lo- Waves. Theoretical analysis of the temporal correlation func-
calization transitionKI> 1, wherek is a wave number in the  tion of multiple-scattered waves has been extended to ampli-
medium, and is a mean-free-path fying disordered medif23], as well as to the case of intense

It is well known, that multiple scattering of coherent wave incident waves producing flows of scatterers in the disor-

in a disordered medium results in a complicated spatial infjered medium[24,29. An additional contribution to

tensity distributiori (r,t) known as a “speckle pattern.” The C5!(r’T)’ originating from scattering in the |mmed|ate
speckle pattern is highly irregular and appears random to thne|ghborhood of source andfor detector, decaying much
; . “Slower than all the previously known contributions, is pre-
eye. It is now well established that the speckle pattern exhi dicted to exis{14].
its large intensity fluctuationf6—8] (4l (_r’t)2>:<| (r,t?)?, High sensitivity of multiple-scattering speckle patterns to
or|g|_nat|ng from the mterfer(_ance of partial waves arriving atgcatterer motion gave rise to a new technique for studying
r with completely randomized phases. Here the angulathe scatterer dynamics in disordered, turbid media, the so-
brackets(---) denote ensemble averaging, a@di(r,t) called “diffusing-wave spectroscopy(DWS) [19,26—29.
=I(r,t)—(I(r,t)). Besides, the speckle pattern possesseshe latter is now widely applied in concentrated colloidal
nontrivial long-range spatial correlatioB(r,Ar)=(sl(r  suspensionfl9,26-3(Q, foams[31—35, emulsiond36—39,
—Ar/2}1)6l(r+Ar/2t)) even forAr>I. This correlation is  granular[39-41, and biological[42—44 media. Besides,
due to interaction of diffusing modd9—12. If the points the DWS has been extended to macroscopically heteroge-
r=Ar/2 are far enough from the boundaries of the mediumneous turbid media, providing a tool for imaging of dynamic
Csoc1l/Ar. Recently, it has been shown that in a particularheterogeneitie§45—47 and visualization of scatterer flows
case of a point source of waves embedded inside a disof47—-49 in the bulk of the medium. A generalization of DWS
dered medium, there exists an infinite-range contribution taechnique has been also accomplished for anisotropic disor-
Cs(r,Ar) originating from scattering events taking place in dered medi§50-52. Recently, the DWS approach has been
the immediate neighborhood of the soufd&]. This contri-  extended to nonergodic turbid med&s3,54.
bution is highly sensitive to the short-distance properties of The above-mentioned, extensive studies of temporal fluc-
disorder, as well as to the source size and slagg tuations of multiple-scattered waves, as well as the numerous
If the scatterers in the medium are allowed to moveapplication of DWS, are all restricted tmear disordered
[(r,t) fluctuates with time, and the statistics of these fluctuamedia. In general, little information is available on the sub-
tions is also a subject of active research. A wave propagatingct of multiple scattering imonlinear disordered media.
Meanwhile, the question concerning the way in which the
nonlinearity affects the multiple-scattering speckle pattern
*URL: http://www.ilc.msu.su7 skipetr/ still remains open and continues to attract research. Consid-
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erable efforts have been made to understand the phenomenaes to form. Meanwhile, the instability can manifest itself
of coherent backscattering in disordered media with Kerrin spontaneous fluctuations of speckle pattern. In order to
type nonlinearity{55—-57: a narrow dip has been predicted clarify the issue of instability of speckle patterns in nonlinear
to appear on the top of the backscattering peak. Weak locatlisordered media, we consider the following questions:
ization effects are shown to exist in the radiation of second (a) Can the multiple scattering provide a positive feed-
harmonic and difference frequenfy6,58—60Q, though their  back mechanism for waves propagating in a nonlinear disor-
experimental observation faildé1]. Also studied, account- dered medium?
ing for disorder, is the optical phase conjugati@2—65. (b) If “yes,” how strong should the nonlinearity be for
More recently, correlations in transmission and reflection cothe instability to develop?
efficients of second harmonic waves have been investigated A general announcement of our principal answers to the
both theoretically and experimentall$6], and the angular above questions has been given in our recent IER&}. In
correlation functions of fundamental wave in a disorderedthe present paper, we discuss and justify the assumptions and
medium with Kerr-type nonlinearity have been calculatedapproximations underlying our conclusions, provide the
[67]. Despite the fact that theoretical description of wavemissing details of calculations, and give a comprehensive
scattering in nonlinear media is complicated by the simultadiscussion of results. Also developed and discussed is the
neous presence of both disorder and nonlinearity, the staperturbation approach to the calculation of the temporal au-
dard diagram technique for impurity scattering has been extocorrelation function of multiple-scattered wave in a nonlin-
tended to the case of disordered medium with nonlinearity okar disordered medium. It is important that the validity con-
Kerr type[68,69. dition of the perturbation theory coincides with the condition
Very recently, it has been shown that the speckle patterfor the instability threshold as obtained by using the self-
resulting from the multiple scattering of coherent wave in aconsistent approach. In addition, we give a detailed consid-
nonlinear disordered medium with Kerr-type nonlinearity, eration to an experimentally important case of moving scat-
should be extremely sensitive to changes of scattering potetierers, when the decrease of the time autocorrelation function
tial [70], i.e., much more sensitive than thieear speckle is due to a combined effect of spontaneous and scatterer-
pattern. This high sensitivity has been explained by the mulmotion-induced fluctuations of the speckle pattern.
tiplicity of solutions of nonlinear wave equatidi0]. The The remainder of the paper is arranged as follows. In Sec.
multiplicity of solutions has been then shown to lead to thell, we introduce the nonlinear wave equation, and discuss
temporalinstability of the multiple-scattering speckle pattern how the path-integral approach can be applied for its analy-
in nonlinear medium, resulting ispontaneoudluctuations  sis. We also formulate the basic models and approximations
of scattered wave with timg71]. An important prediction of used throughout the paper. Section Ill is devoted to linear
Ref.[71] is that the nonlinearity should exceed some threshdisordered media. In this section, we provide the expressions
old value for the instability to develop. The threshold valuefor the spatiotemporal intensity correlation functions. Al-
is principally determined by the absorption lendith, or by  though correlations of multiple-scattered waves in linear me-
the sample sizé, if L<L,. The striking feature of the es- dia are well studied nowadays, we present their first, to our
tablished result is that the threshold value of nonlinearityknowledge, treatment with a simultaneous account for ab-
tends to zero in an unbounded medium without absorptionsorption, boundary conditions at the sample surface, and
Purely elastic, unbounded nonlinear multiple-scattering sysscatterer motion. The results of Sec. lll serve as a base for
tems are therefore always unstable. The physical origin ofurther calculations. In Sec. IV, we present a calculation of
the instability is easy to understafiiL]. Nonlinearity modi-  dephasing of waves in a nonlinear disordered medium. Our
fies the phases of partial waves propagating in the mediuntalculation takes into account the fluctuations of the local
The phase modifications are proportional to the intensityrefractive index due to nonlinear effects, as well as the long-
I(r,t) and affect the mutual interference of partial waves. Asrange spatial correlation of these fluctuations. Three “non-
it is this interference that is responsible fdr,t), a sort of  linear” contributions to the dephasing are identified in addi-
feedback establishes in the medium. A small modification otion to the usual, “linear” term originating directly from the
[(r,t) causes modifications of phases of partial waves whichmotion of scatterers. Further, in Sec. V we develop a pertur-
in their turn, produce changes Koffr,t), and so on. It is well  bation theory for calculation of the temporal autocorrelation
known that nonlinear wave systems with sufficiently strong,function of a multiple-scattered wave, and show its failure at
positive feedback, may become unstafdi2,73. As an ex-  short correlation times, for sufficiently weak absorption. A
ample, we cite a family of nonlinear optical systems with condition of validity of the perturbation theory is established
two-dimensional feedbadk’3—76, where spontaneous for- by comparing the linear and nonlinear contributions to the
mation of complicated spatial structures is observed. Despitdephasing found in Sec. IV. Section VI presents an alterna-
the absence of disorder, such systems exhibit transition ttive, self-consistent approach to the calculation of the tem-
seemingly chaotic dynamics with increasing nonlinearityporal autocorrelation of scattered wave. Development of self-
[75,76. An analogy can be drawn between the nonlinearconsistent theory requires some additional assumptions,
optical systems with two-dimensional feedback and nonlinwhich are also discussed in this section. In Sec. VII, the main
ear disordered media by considering the scattering as esults of our self-consistent approach are presented and dis-
(three-dimensionalfeedback mechanism. In the case of dis-cussed. The multiple-scattering speckle pattern is shown to
ordered media, however, the feedback is of random naturexhibit spontaneous fluctuations even in the absence of scat-
and it is therefore hopeless to expect regular spatial struderer motion, which we interpret as a signature of its insta-
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bility. A comparison of self-consistent and perturbative re-Cy.(Ar,7)=(e(r—Ar/2t)Se(r+ Ar/2t+7)). For a me-

sults is given, and the condition of the speckle patterndium composed of pointlike scatterers undergoing Brownian
instability is shown to coincide with the condition of validity motion with a diffusion coefficienDg [18,20,

of the perturbation theory. Finally, concluding remarks are

presented in Sec. VIII. In order to maintain the text of the 4 (k4) Ar?
paper readable, we have chosen to collect the technical de- Coe(Ar, 7)=—r——"p r{— D ) 3
tails of calculations in three appendices. Appendix A is de- (4mDg7) B7

voted to the derivation of the field-field spatiotemporal cor-
relation function. In Appendix B we compute the spatio-
temporal long-range intensity correlation function. Appendix
C provides the details of calculations of path distributions
ps(r) andpg(r,r") defined in Sec. IV.

wherek=kgyny, and the mean-free-path<l|, is introduced
(a weak scattering limikl>1 is assumed A natural time
scale for scattering of waves in the medium described by Eq.
(3) is set by the characteristic time needed for a scatterer to
move a distance of the order of the wavelengty
Il. WAVE EQUATION AND PATH INTEGRALS :(4k2DB)_1. From here on, we will be interested in short
correlation timesr<< 7y,
We consider a scalar monochromatic wave of frequency |n the linear cases,=0), several approaches have been
o propagating in a random medium with Kerr-type nonlin- elaborated to analyze E€l). We mention the diagrammatic
earity. The wave amplitude(r,t) obeys a nonlinear wave techniqueg80,81], theory of radiative transfe7], and the
equation[77,78: method of path integralg32,83. The three approaches are
2 i known to give equivalent results fa€, at 7<<7y. In the
{V2tkelegtisgt de(r,t)+aa (r,0)*Ty(r,)=0. present paper, we adopt the method o?path integrals that was
originally proposed in the framework of quantum electrody-
Herek, is the free-space wave numbeg=¢{+is is the namics[84], but later has been successfully used in various
average(compley dielectric function,ds(r,t) is the fluctu- ~ &reas of physic§85], and, in particular, for the analysis of
ating part of the dielectric function, ang is the nonlinear Wave scattering problen($2,83. The method is based on
susceptibility[79] (the two latter quantities are assumed to the fact that the solution(r,t) of the wave equatiofil) can
be real. Equation(1) is valid only if Se(r,t)+e,| g (r,t)|2 be written in a form of a functlonal mtggral, Wlth.mtegratlon
does not change significantly on the time scaleof.. The  Performed over all possible trajectorigsaths going from
expression in the square brackets of EY.can be consid- the source of waves to [82]. Since in the weak scattering
ered as some “effective” dielectric function of the medium. limit (kI>1) different trajectories can be considered inde-
General analysis of Eq1) for arbitrary relation between Pendently, it appears that the correlation funciipreduces
various terms comprising this function constitutes a formi-to the following integra[26-29:
dable task, and is not a purpose of this paper. We assume the

following hierarchy: Cw(fyT):|ofo P(r,s)ex;{ — E<A¢2(T)>s
(e3l(r, 0] y<(8e?(r,0)),  (e3lu(rv)]*)y<eq,

|20l <leol

ds, (4

2 wherel g is the average intensity in a nonabsorbing medium,
P(r,s) is a weight coefficient of paths of length and

In other words, we assume that the role of nonlinearity is leséA ¢?(7))s denotes the squared phase differerce(t, 7)

significant than that of disorder, and that absorption is weak= ¢(t+ 7) — ¢(t), averaged over various realizations of dis-

allowing multiple scattering of waves in the medium. It is order, and over all possible paths of the same lesgBrom

then convenient to define the effective refractive inadgx here on, we denote such an averaging(by-)s. Note that

= (g4)Y?, the absorption length,=ny/(koeg), and the non- (A ¢(7))s=0 for the model of Brownian pointlike scatterers.

linear coefficientn,=&,/(2n,), which determines the non- Meanwhile,[27-29

linear correction to thélinearn refractive index of the me-

dium: n(r,t)=no+ nal (r,t), wherel (r,t)=|y(r,t)|? is the <A<P2(T))§°)=l§, ®)

wave intensity. 7o |

In this paper, we study the fluctuations of the solution of

Eqg. (1) with time t. In a linear medium £,=0), these fluc- where the superscript (0) denotes the linear case. It is worth

tuations can only be due to random fluctuationsde(r,t) noting that(Ago2(7)>§°) does not depend neither on the

with time. The fluctuations ofi(r,t) are commonly charac- sample geometry, or on the source and detector positions. Its

terized by the autocorrelation functionC,(r,7)  value is only determined by the scatterer dynantibsough

=(y(r,t)y*(r,t+7)). We assume that this autocorrelation the single-scattering correlation timg), and the path length

function is independent df which implies that for fixed, s. In contrast,P(r,s) can only be calculated if the sample

¥(r,t) represents a stationary random procghss is obvi- geometry, source distribution, and detector positioare

ously true if the sample geometry and the source distributiospecified. In what follows, we restrict our analysis to a semi-

do not change with time, and s(r,t) is a stationary ran- infinite medium occupying the half-spaee-0, and illumi-

dom process We take de(r,t) to be a Gaussian random nated by a plane monochromatic wave incidertz-aD. For

field with zero mean and the correlation function s>I, P(r,s) becomed27-29,86
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372 \ 12 322 s Assumption(i) allows us to consider the path distribution
P(r,s)= - . (6) P(r,s) being unaffected by nonlinearity. The only object to
3 4sl | : ; :
4mls a be recalculated, accounting for nonlinear effects, is then

(A@?(7))s. Before going into an explicit calculation of
Once the field correlatiol ,(r,7) is known, the autocorre- <A(p2(7-)>s, we devote the next section to a brief derivation
lation of intensity fluctuationsCg/(r,7)=(8l(r,t)8l(r,t  of some important results for linear medium.
+ 7)) can be found applying the factorization approximation:
Ca(r, 1) =ICy(r,7)|? [87]. _ lll. CORRELATIONS IN A LINEAR MEDIUM
Combining together Eq$4)—(6), one obtains the normal-
ized autocorrelation function of multiple-scattered wave in a As indicated above, we consider a monochromatic plane
semi-infinite disordered medium: wave incident at the surface=0 of a semi-infinite medium
occupying the half-space>0. The average intensity at
" Cyl(r,7) 7 >1| can be then found in the diffusion approximati¢n;388|
91°(n7m=5 r.0) &P~ Tl D (I(r,))=leexp(-zLy). The spatiotemporal correlation
v function of the field is given by a solution of the Bethe-
Salpeter equatiofsee Appendix A for details of the calcu-

|
a(r)—L—

where the superscriptL) denotes the linear casey?(7)

—37/(270) +12IL2, andL,= (Il J3)2>1. For the diffusely 210"

reflected wave, we assunze=| and get C ot AT m)= (9t~ ATI20) G (1 + ATJ21-4 7))
(L) ) | | sin(kAT) Ar 2 .
e (T):eXpl’_“(T”L_a - ® ~lo—ar O 5 a7 O

Let us now consider the correlation functions of intensity
fluctuations. In addition t@&l (r,t), which is the deviation of
intensity from its average value, it is convenient to define
Al(r,t,7)=I(r,t+7)—I(r,t), which is the change of the lo-
[cal intensity during the time intervat. While (5l(r,t))

From here on, we will usg,(r,7) to denote the normalized

autocorrelation function at a point inside the medium,

while g,(7) — for the normalized autocorrelation function

of diffusely reflectedvave. The superscriptd) and (NL)

will be used to distinguish between linear and nonlinea - )

cases. =(Al(r,t,7))=0, the correlation function€ 5(r,Ar,7) and
Now we turn to the nonlinear medium. Strictly speaking, Cai(T AT, 1) =(AI(r—Ar/2t, 7)AI(r + Ar/2t,7)) for Ar

the method of path integrals cannot be applied for the analy=! ¢an be found in the factorization approximation:

sis of Eq.(1), oncee,#0. The failure of the path-integral 9

technique follows from the fact that this approach relies on C,;|(r,Ar,r)=|C¢,(r,Ar,7-)| ' (10)

the superposition principle, which is not valid for waves in

nonlinear media. However, if the nonlinearity is weak Cai(r,Ar,7)=2[C45(r,Ar,0)—Cy4(r,Ar,7)]. (11

[which is ensured by the first two inequalities of E2).], Eq. ) )

(4) is still approximately valid provided that its main ingre- ~ Both correlation functiong10) and (11) decrease expo-

dientsp(r's) and<A(P2(T)>s are Computed with account for nentla!|y with AI’/.l, and thus become negl|g|b|e far >1. )

nonlinear effects. To simplify such a calculation, we assuméntensity correlation persists, however, even for two points

that the nonlinearity is sufficiently weak to validate the fol- Separated by a distande >1. This correlation is due to the

lowing two assumptions: diffusive nature of wave transport in the medium and can be
(i) Propagation of waves in a weakly nonlinear disorderedfound either using the Langevin approdéhl1] or applying

medium is diffusive with a mean-free-pathunaffected by ~diagrammatic methods.0,12. We give the details of calcu-

the nonlinearity. This implies that nonlinear refraction is lations in Appendix B, the final results are

negligible at distances of ordd; and consequently, that

An?kl<1, whereAn=n,l,, andl, is the average intensity Cai(rAr,7)

in the absence of absorption. This assumption is an alterna-

tive formulation of the fact that the role of nonlinearity is = IédeK K Q( K, K2+|2/L§,E,E,a(7)>
much less significant than that of disordeee also the first (kh2 “Jo I
two inequalities of Eq(2)].
(i) Intensity of the third harmonic remains always much X Jo(KARID), (12
smaller than the intensity of the fundamental wave. This im-
plies either that/(r,t) is considered as a complex quantity 6 (=
[in this case, Eq(1) is a nonlinear Schidinger equation, Cai(F,Ar,7)= (kl)zlofo dKKAQ
|4(r,1)|? is time-independent, and the third harmonic is not
generated at dll or that the medium has a sufficient degree z Az
of dispersion for the phase matching condit[d7,78 to be x| K, K2+|2/L§a|‘,|—,a(7),a(0))
violated:|Ak|I>1 with Ak=kz— 3k andks being the wave
number at frequency @. X Jo(KAR/). (13
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Here we use the cylindrical coordinates: {R,z}, J, is the 3 12 1[1 1 .
Bessel function of zeroth order, the functi@nis defined in Cs(r,Ar,r)=— —02 e ex;{ —2a(1) 7|,
Appendix B, and 4 (k2 zZg|x Ji+y [
(15
AQ(. .. ,a(7),@(0)=Q(...,@(0)-Q(...,a(7)). wherez, is the geometrical average efcoordinates of the

(14 two points for which the correlation is computed

=2 AZ%4 and y=Ar/(2z4). For a(7)=0, Eq.(15) is

Due to a rather complicated structure of the funct@n exact. If y<<1, the correlation behaves essentially a&rl/

(see Appendix B further calculations can be done only ap- while for y>1 it becomes proportional thIAr?’. For the
proximately. In the case df=Az/2 Ar<|/a(7), we get correlation function of Eq(13) we find

A a(1)—a(0)](Z/)Cys(r,Ar,0), 2a(7)(2/1)<1,

Ar,7)= 1
CarlhALD= 50 (rARD), 2a(7)(Zl)>1. (16
|
IV. DEPHASING OF WAVES IN A NONLINEAR MEDIUM 5 3) 5 oS8
A =( kgn f f Cy(r,Ar,7)ds,d
Consider a single wave path of lengitgoing from the (Ae%(7))s < 2] Jo al mds, SZ>S
source of waves to some point The phase acquired by a 5
wave traveling along such a path can be written as S
920 P =<kol>2n§<cA.<r,Ar,r>>s(|— @
S
e(t)= JO kon[r(s1),t]dsy, (17)  Here the integrations are assumed along wave paths of length

s>| [in Eq. (22), both integrals are along the same gdath
) ) ) Equation(20) originates from the short-range correlation of
where the integration is along the path, anr,t)=ng intensity fluctuationgsee Eqs(9)—(11)]:
+n,l(r,t). The squared differencedAo(t,7)=¢(t+7)

—¢(t), averaged over various realizations of disorder, and 5 @) 12,2 s [
over all possible paths of lengthis found directly from Eq. (Ag™(7))s :k0n2<CAI(r1017)>sfodsf_ld(AS)
17):
sin(kAs)]? As
3 X TS ex —I— , (22)
(Ae*(m)s= 2, (Ae*(n), (18

where the wave path is assumed to be ballistic at distances
h he f ibuti ding ite 0 3 shorter than. Equation(22) reduces t@20) for kI>1. Next,
where the four contributions corresponding jte 0, ..., the term given by Eq(21) is due to the long-range correla-

originate from different physical processes. Below, we givetions of intensity fluctuationgsee Eq.(13)]. The averages
explicit expressions of these terms and discuss their origin.emering into the right-hand sides of E4$9)—(22) are

The first term in Eq(18), (A¢?(7))? is the linear term
given by Eq.(5). The next three terms, namely, the terms
corresponding t¢g=1, 2, and 3, are absent in the linear case (('(U))s:j d3rps(N(I(r), (23
and only appear because of nonlinear nature of wave inter-
action with the medium. Explicit expressions for these terms

are (Car.0m)s [ PronCu(r0m, (24
2n, 7 (s 2n, 7 S
<A¢2(T)>gl):<n_o|T_ojo<|(r)>dsl>szn_oT_o«l(r)»sl_’ (Carr.807)5= [ 1, [ Frapulry ) Curtrar ),
(19 (25

< where the integrations are over the volume of the disordered
(Ag?(7))@ = 1kon§f Cy(r,0,7) ds; medium, and ; ,=r*=Ar/2. In Egs.(23)—(25), p4(r) is the
No 0 probability density for a path of length to pass through the
vicinity of r, andpg(r,r»,) is the probability density for the
_m™ 2 S path to pass consequently through the vicinities,céndr ,.
No koln2(Cai(r,07))s7 20 These two “path distributions” should be calculated with

S

056614-5



S. E. SKIPETROV PHYSICAL REVIEW E 63 056614

account for a particular geometry of disordered sample and 3/2

S
source of waves. Once the geometry is fixed, the calculation (A ¢?(7)))=6An?S(a(7)s/l,a(0)/s/l) T

is straightforward. For the case of a plane wave incident 28)
upon a semi-infinite disordered medium, the calculations of
ps(r) andpg(ry,r,) are presented in Appendix C. Here H(x) = Jmx exp&?)[1—Erf(x)] andn,=1 is assumed

Let us discuss briefly the physical origins of nonlinear

contributions to the dephasing given by Ed49)—(21). for simplicity. The functionS(u,v) in Eq. (28) is

(A¢?(7))M describes the change of the effective wave num- - - . (22

ber in the nonlinear medium:k=kony—Kk(r)=ke[Ng S(U,v)=9f dRRf dKKf de d(Az)f(z,Az,R)

+ny(1(r,t))]. This contribution can be either positive or 0 0 o Jo

negative, depending on the signrof, but its absolute value S AOK VK24 022 Az u.0)J(KR 29

is always much smaller thaph ¢?(7)){?, as long agAn| QUK. v%2,42.U.0)J(KR), 29

<ng. (A¢?(7))Y can therefore only cause a small correc- Y

tion to the linear correlation function. The next contribution, f(z Az R)= mex — § 27+ JR2+ A72)2
linear _ : (zAzR) . (22+1/ )

(A@?(7))? originates from fluctuations of the local inten- JR?+Az 4

sity, while (A¢?(7))$ is due to the long-range correlation

of these fluctuations. An important difference between the 2zt VR?*+47° exd — §(22+ JRZT 472)2

linear term(5), the first nonlinear terng19), and the two last JRZ+ 472 4 ’

nonlinear termg20) and (21), is that the latter terms do not

depend explicitly onr,. The terms given by Eqg20) and (30

t(rzll) are deter(rjr_nn?d by thmterjrs#y ﬂu.ct#atlon,sand l;] ot by Unfortunately, integrations in Eq29) cannot be performed
the scatterer disp acement_s. IS mig t seem to be a mear e general case. We find, however, the following approxi-
ingless statement, as the intensity fluctuations are, in the'ﬁwate results:

turn, caused by the scatterer motion. The important point is '

that the scatterer motion is not the only possible reason for (u—v), u—v<1, v=<1,
the fluctuations of intensity with time. Weak, spontaneous

fluctuations ofl (r,t) (due to thermal fluctuations of various 1 u-v>1, v<l,
parameters, vibrations in the experimental setup, fluctuations (u—v)v % u-v<1, v>1,
of the incident wave, etg.are inevitable in real physical ,-3 U—0>1 v>1
systems. Equation€0) and (21) provide a mechanism for ’ ’ '

this spontaneous ?”d generally weak fluctuations to affeqtiere numerical factors of order unity are omitted before each

the dephasmg(A_cp (7))s and, consequently, the temporal of the four asymptotic expressions.

correlation function of scattered wave. While approximate, the above results enable one to com-

pute the temporal autocorrelation functigf'”(7) of dif-

fusely reflected wave numerically using Edg), (6), and

As stated in the title, the present paper is devoted td18):

weaklynonlinear disordered media. We limit ourselves to a (NL) 5

weak nonlinearity, as otherwise the problem becomes too 01 (1) =W[(Ae*(7))s]/WL[O], (32)

invglved. Above, we have already mentioned that we assume 1

An“kl<1, and that this condition allows us to consider the 2 (7 2

transport of average intensity to remain unaffected by the WI{A¢™(7)s]= fo P(I,s)exp{— 2{8e%(7)s

nonlinearity[assumption(i) of Sec. Il This allows us to use (33

“linear” results, {I(r))=1q.exp(~zL, and Egs.(C5 and

(C8) of Appendix C, for{I(r)), ps(r), andpg(rq,r,) in Egs. We present the results of the calculation in Fig. 1 for fixed

(23)—(25). It seems then natural to assume thag(r,0,7) An, kol, and the values of the inverse absorption leridth

andC,,(r,Ar,7) are also close to their linear values. We canindicated near each curve. The “linear” correlation func-

therefore replace these correlation functions in E&4) and  tions, corresponding to the same three values of the absorp-

(25) by the expressions found in Sec. lll. Then, making useiion length, and taAn=0, are shown by dashed lines. For

of Egs.(10)—(13), and performing necessary integrations, weweak absorption|(L,=0, 10°%), the initial (i.e., at short

obtain from Eqs(19)—(21): correlation delay times) decrease of the “nonlinear” auto-
correlation function is much faster than that of the linear one.

S(u,v)= (30

V. PERTURBATION THEORY

ds.

1 T Hence, our perturbation approach fails at short times. Indeed,
(A¢?(7))S )=2AnT—O[ 1_H(a(0) ﬁ) } 7' @9 the results of this section are based on the assumption that
Cai(r,0,7) and C,,(r,Ar,7) in the nonlinear medium are
2 @) ) \F close to their values in the linear one. Applying the factor-
(Ae™(7))s=2mkol An* H| a(7) 3 ization approximation, we find that this implies that 1
—g"Y(7)|2=1-|g{"(7)|% Although this condition seems
s\ s - . i
—H( «(0) \/;)] , 27 to hold well for sufficiently larger, it can be violated at

small 7, where, as follows from Fig. 1, |g{N"(7)|? can
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T at such short times, one has to use a nonperturbative, self-
] consistent analysis. However, the possibility of performing
such an analysis is considerably limited by the mathematical
complexity of the considered problem. To make the self-
consistent analysis possible, we adopt the following two ad-
ditional assumptions:

(iii) The statistics of a wave field scattered in a weakly
nonlinear disordered medium, is close to Gaussian. Conse-
quently, the factorization approximation holds in a weakly
nonlinear mediumC 5 (r,7)=|C (r,7)|?.

(iv) The functional form of ther dependence of
g"Y(r,7) is the same as that of{"(r,7): g{"“(r,7)
=exd —pB(nzl], where B(7) is some unknown function,
which can depend not only onbut also on other parameters
of the problem(namely, onl/L,, kol, An).

Strictly speaking, the above assumptions define a sort of
perturbation theory, but now we do not limit the values of

L k=100

0.000 0.005 (;/py1/2 0010

FIG. 1. Normalized temporal autocorrelation function of a wave
diffusely reflected from a semi-infinite nonlinear disordered me-

dium, calculated using perturbation theory fam=10%, kgl deviati . . . . .
- o ) eviations of intensity and field correlation functions from
._100’ and th? values dflL, 'nd'cat.ed near each C.UN@SO“d . their values in the linear case. Instead, we assume that the
lines). Dashed lines show corresponding results for a linear medium . . S .
(An=0). non_lmganty does not cause S|gn|f|ca_nt n_1__od|f|cat|ons of the
statistics of scattered wave$assumption(iii)] and of the
become much larger than_llg(L)(T)|2 if absorption is suf- functional formof the field correlation functiofassumption
ficiently weak 1 ’ (iv)]. Note that now the autocorrelation functigf'")(r,7)
To estimate the region of validity of our perturbation ap- €N deviate significantly f_rorg(lL)_(r,_r). Condition(iv) fixes
proach, we require that the linear contribution to the dephage functional form of this deviation, but implies no con-
ing (A¢%(7))s given by Eq.(5), should be considerably Straints on its absolute value. , ,
greater than the sum of nonlinear contributiggss. (26)— Obviously, both the assumptiofiéi) and(iv) require the
(28)]. As the longest path length contributing to the integrain@nlinearity to be weak. Assumptidiiii) is justified under
of Egs.(4) and(33) is s ~ |/a?, we obtain the conditions of the same conditions &$) (see Sec. )| since the Gaussian

validity of the perturbation theory in the form: statistics of thetotal scattered wave fielgi(r,t) is a conse-
quence of the complete randomization of phaseganftial
An2a(7)” kol + a(7) " 1]<1. (34  waves arriving at. The reason for the randomization is that

the typical distancé between individual scattering events in
Since a(7) is an increasing function of its argument, and a multiple-scattering sequence is much larger than the wave-
a(0)=I/L,, condition An?(L,/1)?[kol +L,/11<1 ensures length (I>1) [8]. Obviously, such a mechanism of phase
Eqg. (34) at anyr. Itis the case for the upper curve of Fig. 1, randomization is equally effective in both linear and weakly
corresponding té/L,=5x10"3. For such a strong absorp- nonlinear media, as long &5 holds.
tion, the perturbation theory is valid at any and the non- To justify the ansatz of assumptidiv), we apply Eq.(4)
linear autocorrelation function is close to the linear result. Byand writeg{N" as
contrast, ifAn?(L, /1) kol +L,/11>1, the perturbation ap-
proach can be applied only for sufficiently long correlation ) _ 322\ 12 z) (a0 1 B 322
times 7> 7., where the critical timer, is determined by Eq. 91 (r,7) am| € L. Jo ST/zex Als ds,
(34). For the lower curve of Fig. 1, corresponding ltd. , (35)
=0, we find (r¢/79)¥?~2%x 1073, It is worthwhile to note
that in the absence of absorption, even an infinitely smalwhere we assumed that/l,+(1/2)(A¢?(7))s increases
nonlinearity (A\n—0) suffices for the perturbation theory to monotonically with s and becomes of order unity at
fail at 7/ 79— 0. Our condition of validity of the perturbation =S1(7)>so=2%/(21). After performing integration, Eq.
approach(34) is consistent with the result of Spivak and (35 can be approximately rewritten as ezpf){1
Zyuzin [70], who have shown that the perturbation analysis—Z3/(mlsy) 1" =exd—B(nzI] with Bz/1=z(Is;) "
of the sensitivity of speckle pattern in a nonlinear disordered-2/L,<1. In the opposite limit o8z/1>1, g{N"(r,7) van-
medium to changes of scattering potential fails forishes and the functional form of its dependence is of no
An?(L/1)3>1, whereL>1 is the typical size of the medium. importance. Anyway, it will be seen from the following that
the exact functional form of the dependence od(r,7) is
VI. SELF-CONSISTENT ANALYSIS not of crucial importance, sincg; is integrated over the
whole medium during the calculation of the correlation func-
As demonstrated in the previous section, the perturbatiofion of diffusely reflected wave.
theory fails to describe the temporal autocorrelation function Making use of Eqs(19)—(21) and relying on the assump-
of wave diffusely reflected from a nonlinear medium for tions (i) and(iv), we recalculate the nonlinear contributions
<., wherer, is defined by Eq(34). To calculateg{N")(7)  to the dephasingA ¢?(7))s. Due to the assumptiofiv), the
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result can be obtained from Eq26)—(28) by a simple sub- I S
stitution: a(7)— B(7)+ a(0). Recalling thata(0)=1/L,, <A<p2(r)>g2>:2wko|An2[H (3+L— ﬁ)
we obtain a

U el

(Ag?(7))P=2An—
7o

B(sl)?, BslI<1, (I/L,)sll<1,
(s/1)32 BsII>1, (I/L,)sll<1,
2 3~ 2
(A%(7))s7=6An"x BLIN3SIT, BysIT=<1, (I/L)\slT>1, (39
(La/D)?, BVsIT>1, (I/L,)s/>1.

As follows from Egs.(36)—(38), the nonlinear dephasing tion function g{"“(0") can be found by solving Eq39)

depends on the unknown functigh Since the temporal au- numerically. In Fig. 2, we plot the left-hand and the right-
tocorrelation function of diffusely reflected wa"”(7)  hand sides of Eq39) for fixed |An|=10"4, kol = 100, and
=exd —B(7n] is determined by3 as well, Eqs(32) and(33)  for several values of/L,. If absorption is strongl{L,=3

allow us to formulate a self-consistent equation for x 102 for consideredAn| andkgl), Eq.(39) has a unique
solution B(0*)=0, which corresponds tg{N")(0")=1.
exl — B(7)]=F(B(7)), 39 However, a second solutiog(0*)>0 appears for suffi-

ciently weak absorptionl(L,<3x 10" 3). The point of ap-
pearance of the second solution isifurcation point of Eq.
(39). To choose the solution realizable in a physical system,
we note that the first solution3(0")=0] exists only for

whereF(8) =W[(A¢?(7))s]/W[0], W[ ...] is defined by
Eq. (33), and(A ¢?(7))s is a sum of terms given by Eqe)

and (36)—(38). Equation(39) is the main result of our self-
consistent analysis. Although the functional formrdiB) is /7,=0, and disappears at finite/7y, since F(0)<1 for

rather complicated, and E39) cannot be solved analyti- 7/ 79>0. This solution is therefore inaccessible by continu-

cally, the numerical solution is straightforward and can be o T ;
4 ; ity, and “unstable” with respect to small scatterer displace-
carried out for any values dn, I/L,, ko, andr. Equation

(39) can be considered as a self-consistent equation for thments. The physically realizable solution should represent
. . , " e limit of B(7) for 7/ 7p—0, which is given by the second

autocorrelation function of diffusely reflected wave, since luti f Ea.(39). It is theref hi lufi h

B(7) andg"() are directly related. It is worthwhile to S0ion Of EQ.(39). It is therefore this solution that one

. ; o expects to be realized in a real physical system.
note that in the absence of nonlmearn&r(—(_)), Eq. (39) The fact that Eq.(39) can have a positive solution
yields g(7)=a(7)—1/L,, and hence Eq(8) is recovered
Lor g9 (7).

1.000 : . . . :
VII. RESULTS AND DISCUSSION

We start the analysis of E¢39) from the case of immo-
bile scatterers, taking a limit of/7;—0. We denote the
autocorrelation functions corresponding to this limit by
g "NY(0*) in order to distinguish them fromg{"~> "NV (0),
which correspond ta-=0.1 Obviously, g{-)(0%)=g{")(0)
=1. In a nonlinear medium, Eq$37) and (38) can still
contribute to the dephasing even farr;— 0. These contri- 0.996 -

FIB(0™")]

-4
butions are insensitive to the sign Ain. A corresponding LA”|_=110% "
value of 3(0") and, consequently, of the field autocorrela- o= . . . . iy
5
8(0*)=-Ing,""(0") (x107%)

FIG. 2. Graphical solution of Eq:39) at 7/7o—0. Solid lines

'Although we take the limit ofr/7,—0, we assumer>T;,m,  showF[B(0%)] for [An|=10"*, kol =100, and the values ofL,
whereT,m,> 27/ w is the typical time required for the system to indicated near each curve. Dashed line is[ex(0")]. If absorp-
“jump” from one solution of Eq.(1) to another. The time autocor- tion is weak {/L,=0, 10 3, and 2x10 3), Eq. (39) has two so-
relation functiong{""(7) is independent ofr for 7>Tj,,, and  lutions B(0*)=0 and B(0")>0, while for strong absorption

7l 7o—0 [71]. (I/L,=3%10"% and 5x 10" %), the second solution disappears.
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B(07)>0 is a very important issue, singg&0")>0 leads T T
to g{NY(0)=exd — B(0")]<1. A value of the temporal au-
tocorrelation function, which is less than unity, is commonly
associated with temporal fluctuations of scattered waves. In
the considered case, however, the reason for these fluctua-
tions is not the motion of scatterers, as the limit fr

—0 corresponds to immobile scatterers. The fluctuations are
spontaneousind represent a clear signatureimstability of

the multiple-scattering speckle pattérn.

Despite a rather complicated structure of the function
F(B) in Eqg. (39), a relation between the parameters of the
problem corresponding to the onset of the speckle pattern kot=100 .
instability can be found analytically. As follows from Fig. 2, T 10 10 | 107
the initial [at B(0")=0] decay of F[3(0*)] should be
faster than the decay of expB(0™)], for the second solution FIG. 3. “Bifurcation diagram” for a wave scattered in a semi-
of Eq. (39) to appear. A surface in a three-dimensional spacénfinite nonlinear disordered medium. Solid lines show the temporal
of the problem parameteran, I/L,, kol, separating the autocorrelation function of diffusely reflected waverét,— 0 (im-

stable [3(0")=0] and unstable[ 3(0")>0] regions, is Mobile scatterejsfor kol =100 and the values dfL, indicated
therefore given by the equation near each curvédashed line is fot/L,=0). The threshold values

of |An| following from Eq. (41) are shown by arrowsg{N")(0*)

<1 corresponds to spontaneous fluctuations of scattered wave,
which is a manifestation of the speckle pattern instability. Dotted

F(B(0")|go+)—0=—1. (40) line is the linear resulgNY(0*)=1.

1.000

R ('

0.996

J
Jp(0")

Recalling thatl,/I>1, kol >1 is assumed, we obtain from jng temporal autocorrelation function of diffusely reflected
Eqg. (40): wave,g{NY(0"), in Fig. 3. As discussed abovg{""(0)
<1 corresponds to spontaneous fluctuations of scattered
waves, which is a manifestation of the speckle pattern insta-
=1, (41)  bility. It follows from Fig. 3, that in accordance with Eq.
(41), an infinitely small |An| is sufficient to make the
speckle pattern unstable in the absence of absorption, while a
. . certain threshold degree of nonlinearity is required to desta-
where we introduce a control paramefgrand a numerical iz the speckle pattern in a dissipative medium. In the
factor of order unity is omitted. Ifg\f)l,fhe multiple-  apsence of absorption, EG9) always has two solutions:
scattering speckle 'pattern is stablgj . (0 )N—L)l],+wh|le B(0")=0 and B(0*)>0, _correspoqding tcg(lNL)(OJr)-:.l
for p>1, an instability shows up leading g§""(0")<1.  andg{Nl(0*)<1, respectively. As discussed above, it is the
A striking feature of Eq.(41) is thatp can become larger second solution, shown by a dashed line in Fig. 3, which is
than unity even for very smajiAn|, provided that the exten- the physically realizable one. In contrast,liL,#0, |An|
sive parametet ./l is large enough. Our condition of the should be greater than some threshold value for the second
speckle pattern stabilitp<<1 agrees with the condition of solution8(0")>1 to appear. Threshold values |dfn| fol-
validity of the perturbation theory developed in Sec[B4. lowing from Eq.(41) are shown in Fig. 3 by arrowsor a
(34)], evaluated at/7,=0. This readily explains the failure nonabsorbing, elastically scattering mediurtiL¢=0), the value of
of the perturbation theory for short correlation times andg{"“)(0") can be estimated analytically. Indeed, 7t,—0 the
weak absorption: perturbation approach is not suitable foprincipal contribution to(A¢?(7))s is given by (A¢?(7)){?) for
description of unstable regimes. Moreover, the fact that the/l <(kol)2, and by(A ¢?(7)) for s/I>(kol)2. This allows us to
condition of validity of the perturbation theory and the put (A@?(7))s~(A?(7)) if sll<(kol)? and (A@?(7))s
speckle pattern stability condition agree indicates that the=(A@*(7))$ if s/l>(kol)?. Integration in Eq.(33) can be then
additional assumption@ii ) and(iv) of Sec. VI are not essen- carried out, and Eq(39) is easily solved, yielding
tial for obtaining unstable regimes.

To illustrate our self-consistent theoretical framework, we NL 2|An|??, |An|< (ko) ™%
solve EQq.(39) numerically for7/ 0, and plot the result- 9(1 )(0+):1_ s (42
q. y forr/7o—0, and p 3|An|Vkol, |AN|> (ko) 32

La

Kol + i

L2
A2l -2
p—An(I)

This result agrees well with the numerical solution of Eg.
(39) presented in Fig. 3.
2Obviously, Eq.(1) cannot be used to study the dynamics of spon-  The physical origin of the instability of speckle pattern for
taneous fluctuations. Our analysis only allows the revealing of thgg>1 can be revealed by realizing that the system “coherent
presence of such fluctuations, and to calculate their time autocorravave + nonlinear disordered medium” has a positive three-
lation functiong{"")(7) for 27/ 0 <Tjymp<T. dimensional feedback. In a nonlinear medium, an infinitely
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0.99

| An=10"* ]
L kf=100 L k=100
) ) " N 1 " ) ) 1 ) H " N 1 N ) ) 1
0.000 0.005 (/. y1/2 0010 0.000 0.005 (/, y1/2 0010

FIG. 4. The same as Fig. 1, but using a self-consistent approach FIG. 5. Comparison of the normalized temporal autocorrelation
instead of the perturbation theory. For the two lower curvesfunctions calculated using a self-consistéstlid lineg and pertur-
g{"Y(0*)<1 and the speckle pattern is unstable. bation (dashed lines theories. Dotted vertical line indicates the
limit 7. of validity of the perturbation theory fol/L,=0. The
. . . perturbation theory is valid only for> 7., while for 7<r. the
small perturbation of the wave |nten5|t_j/r,t) produces a  phertyrhation result deviates significantly from the self-consistent so-
change of the local refractive index, which alters the phasegtion. For sufficiently strong absorptiot/{,=5x 10"3), the per-
of waves propagating in the medium and, consequently, afturbation theory holds at any: the perturbation and the self-
fects their mutual interference. Since it is this interferenceconsistent results are indistinguishable.
that determined(r,t), the loop of the feedback is closed.

For p=1, the feedback is sufficiently strong to compensatesignificantly, which confirms our conclusion about the fail-
for the (diffusive on averagespreading of the initial inten- ure of the perturbation approach at short correlation delay
sity perturbation, and the speckle pattéfnt) is unstable. It ~times.

is worthwhile to note that unstable regimes are not excep-

tional in nonlinear wave systems and, in particular, in optical VIIl. CONCLUSION

sys(t)emsésee,sg.g., .Ref$.72—7ql).. ted to th of We are now in a position to answer the two central ques-
ur Eq. (39) is in no way limited to the case of/7 tions formulated in the introductory section:

_—>O, and_can be_used to compute the temporal autocorrela- (a) The phenomenon of multiple scattering is capable of
tion function of diffusely reflected wave at amy7o=>0. I r6viding a positive feedback for a coherent wave propagat-
the latter case, one should take into account all the foufhg in a nonlinear disordered medium.

dephasing terms given by Ed$) and(36)—(38). The results (b) The onset of the speckle pattern instability occurs
of the numerical solution of Eq39) are shown in Flg 4. For when the control parameter
weak absorptionl(L,=0,10"%), p>1 and the speckle pat-

tern is unstablg¢g{N(0*)<1]. As /7, increases, the dif- o[ La|?
ference between the “nonlinear” and “linear” curves be- p=Aan (T)
comes less pronounced. For strong absorptiofi &5

x10°3%), p becomes less than unity and stability of the becomes of order or larger than unity. The speckle pattern is
speckle pattern is recoverdgyM"'(0")=1]. We remind stable forp<1.

that the temporal autocorrelation functi@iL)(T)’ corre- The instability of the multiple-scattering speckle pattern
sponding to a linear medium, always equals 1 #b,=0, mamfgsts |tself.|n spontaneous fluqtuatlons of the scattered
. P wave field and intensity. The following features are charac-
as shown by dashed lines in Fig. 4. o : . )
o . . . teristic for the development of the instability. First, the de-
It is instructive to compare the results obtained using the

perturbation theory of Sec. V and the self-consistent apyelopment of the instability is independent of the sign of

. . o nonlinearity. This is not common for nonlinear waves since
proach of Sec. VI. Such a comparison is shown in Fig. 5 Y

. : the instability is often due to self-focusing phenomena,
The two upper curves, corresponding to relatively strong abg i only occur forn,>0 [72-76. The instability of
sorption (/L,=5x103p<1), are almost indistinguish-

) i waves in adisorderednonlinear medium has nothing to do
able, which means that fop<1, the perturbation theory \yith the self-focusing, and occurs at relatively weak nonlin-
works very well. In contrast, fop>1 (see the two lower earities, when the self-focusing can be neglected. Second, in
curves of Fig. 5, corresponding k. ,=0), the perturbation  the absence of absorption, the speckle pattern is unstable for
and the self-consistent curves are close only at the right fromany (even infinitely small value of the nonlinearity strength
the dotted vertical line, showing the minimum timg at  |An|, while in a dissipative mediurfAn| should exceed a
which the perturbation theory is validee Eq.(34)]. For certain threshold value for the instability to show up. Finally,
=7., the perturbation and the self-consistent results disagrethe instability results in a value of the autocorrelation func-

La
kol + l—} (43
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tion g(lNL)(r) of scattered wave, which is smaller than 1 for ~Now we remind thatC,(r,,0,7)=C,(r,,7) is a slow-
7/79—0 (i.e., in the absence of scatterer modiofhis is a  varying function ofr,. We can therefore pull it out of the
clear signature of spontaneous fluctuations of the multipleintegral in Eq.(A4), taking its value at. Performing the
scattered speckle pattern, and should be observable in experémaining integral, we find
ments.
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cussions and continuous support of this work. This equation relates the spatiotemporal correlation of the

field with its purely temporal correlation. Equatio\5)
holds for any sample geometry and source distribution, far
enough from boundaries and sources, andrf@rry. In the

In this appendix, we provide a derivation of the spa-Case of a plane wave incident at the surfaeed of a semi-
tiotemporal  correlation  function, C,(r,Ar,7)={y(r infinite disordered medium, occupying tke-0 half-space,
—Ar2t)y* (r+Ar/2t+ 7)), of a random fieldy(r,t) in
the bqlk of disorde.red medium. Startirjg from the linear wave Cy(r,m)=1loexd —a(7)(21)] (AB)
equationEq. (1) with £,=0], we obtain the Bethe-Salpeter
equation in the fornj11,80,8:

APPENDIX A: SPATIOTEMPORAL FIELD
CORRELATION IN A LINEAR MEDIUM

with ?(7)=37/(27)+ (1/L,)?, leading to Eq.(9) in the
Cy(r,Ar,7) main text. In the factorization approximatigh0), the square
. of Eq. (A5) gives the short-range correlation function of in-
=(Pr=Ar/2)) (" (r+Ar/21)) tensity fluctuations.

+f draJ drbf drcf dryG(r—Ar/2r,)
APPENDIX B: LONG-RANGE SPATIOTEMPORAL
- CORRELATION OF INTENSITY FLUCTUATIONS
XG*(r+Ar/2rp)U(rg,rp,re,rq)

IN A LINEAR MEDIUM
XCy[(retrg)/2rg=re,7], (A1) To calculate the spatiotemporal correlation function of in-

aensity fluctuations, Cg(r,Ar,7)=(38l(r—Ar/2;t) 8l (r

where the integrations are over the volume of disordere . .
g +Ar/2t+ 7)), for Ar>| we generalize the Langevin ap-

medium,G is the average Green function of the linear wavepqachi9 11,90, which has been initially developed for cal-
equation, andu is the irreducible four-point vertex. Far ¢ jation of purely spatial correlations. We assume that the
enough from the medium boundaries, we can replacey  spatiotemporal correlation function of Langevin random

its value in the infinite medium: sources is determined by the short-range correlation function
of intensity fluctuations. In the factorization approximation,
E(r fy)=— 1 ex (ik— i) [ the Ie_ltter is given by the square of the.field—field cqrrelation
12 4lry—r,) 21"t 2 function [Eq. (A5)]. Hence, the generalized Langevin equa-

(A2) tions read

Now we assume that point scatterers in the medium un-
dergo Brownian motion, and that the correlation function of D[ V2= 1LZ]81(r, 1) =diVjex(r,t), (B1)
the dielectric function fluctuations is given by E@®). For
7<7, We can neglect the dependence o) in Eq. (A1),

which in the limit ofkI>1 becomes GO —=Ar2)jS(r+ Ar/2t+ 7))
A 1 cP2ql 5
Ura.fp e la) =~ 8(ra=re) 8(rp—ra) (ra—ro). - §5‘m7|c'ﬂ(r’7)| S(Ar), (B2)
(A3)
Equation(A1) then reduces to where D,=cl/3 is the diffusion coefficient, and is the

speed of wave in the medium. In the case of a plane wave
T — incident upon a boundary=0 of a semi-infinite disordered
Cw(r,Ar,r)=|—f draG(r—Ar/2r,) medium, it is convenient to make a two-dimensional Fourier
- transform of Eq(B1) in the{x,y} plane. Then the equations
XG*(r+Ar/2x,)Cy(ra,0,7), (A4) corresponding taSl (K ,z;,t1) and 61(K,,z,,t,) are multi-
plied, and the product is ensemble averaged. Further trans-
where we assumed the coherent fiél(r,t)) to be negli- formations, which are equivalent to those discussed in Ref.
gible. [11], yield
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(Kl' KZ)G(pIZl!Z’)G(p1221Z,)

6 0
<5|(Klyzl,tl)&(Kz,Zz,tz)):|(2)k_;:-5(K1_K2)f dz
0

!

z
exp{ —2a(7')|— ,

J J
+ /G(p,Zl,Z,) ,G(p!ZZvZ,) (83)
Jz Jz

wherep?=K?+1/L2, and

1
G(p,z1,2)=— Esinr( pmin{z;,z'})exp(—pmaxXz,,z'}) (B4)

is the Green function of EqB1). Evaluating Eq(B3) and transforming the result back to the real space, after lengthy but
straightforward algebra, we obtain

3
(kD?

5 Z

o0 Az AR
Cq(r,Ar,7)= |§f dKKQ(K, K2+I2/La,|—,|—,a(7)>Jo(Kl—>, (B5)
0

where

20°+K?=p?  (a®=p*)(—K>+p?)+a?(K?+p?)cosh2pgy) + ap(K?+p?)sinh(2p¢y)

4013—4ap2 4o exp(2a§1)(a2—p2)p2

1+K_2 sinh(pZy)sinh(p¢,) exp( — pda)sinh(pgy)
p? )2 exd2(a+p)Lr]l(a+p) Aap?(a+p)

X{p(p*+2ap—K?){costps,)exd — (2a+p){,]—coshpy)exd — (2a+p){q]}

+(p?—2aK?=pK?){sinh(pZ,)exd — (2a+p) L] —sinh(pZy)exd — (2a+p) 111 (B6)

Q(K,p,{,Af,a)=exp(2p{) X

+

wherel,=¢—A¢/2 and{,={+AZ/2. d 1

Equations(B5) and(B6) cannot be evaluated in a general d—SG(rl,fz,S)— §|V2G(f1,fz,5): o(ry—ry)8(s),
form. In the limits ofa(7) {,a(7)AR/I <1 we can, however, (C1)
approximately replac® in Eq. (B5) by

1 where | is the mean-free-path. Commonly used boundary
Q(K,p,§,A§,a)~R[exp(—KAg)—exq—ZKg)] conditions for Eq.(C1) consist in puttingG=0 at open
boundaries andV,,G=0 at reflecting boundaries of the
xexg —2a(7){], (B7) sample (where V,, denotes the normal derivative @).
G(rq,r,,s) is called the Green function, or the propagator.
which yields Eq.(15) in the main text. For a semi-infinite medium occupying the half-space0,
one finds

APPENDIX C: DENSITY OF WAVE PATHS
IN A DISORDERED MEDIUM

3 3/2 3
G(rq,r,,s)= (—) {ex;{ — —(AR?+AZ%
Propagation of waves in a disordered medium can be in- 4mls 4ls
terpreted in terms of partial waves traveling along various 3
paths inside the medium. The spatial distribution of such —ex;{—m(AR%ZZ)
paths and their relative weights depend on the scattering
properties of the medium, and on the geometry of the
sample. In the case of multiple scattering, the simplest andyhere cylindrical coordinates are used={R;,z}, AR
at the same time, sufficiently accurate model of wave propa=R;—R,, Az=27,—27,, andZ=2,+2,.
gation is thediffusionmodel. According to this model, wave Following Ref.[86], we introducepg(r,r,,r3), theden-
paths in the medium coincide with trajectories of Browniansity distributionof paths of lengtts, as a number of visits of
particles. The probabilits(r,r,,s) for a path of lengttsto  a given siter, insided®r, in the ensemble of paths of length
pass fronr, tor, is then given by a solution of the diffusion s starting atr; and ending at 3, over the total length of the
equation, which in the absence of absorption rd&6s89: ensemble distinct paths:

: (C2)
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1

M1,lo,[3) = —/———
pS( 1,12 3) SG(rl,rg,S)

S
X fodpG(rl,rz,p)G(rz,rg,S_ p).

(C3

PHYSICAL REVIEW E63 056614

The normalization of Eq(C6) is

f dsrzf dargps(rl,rz,r3,r4):1. (C?)

For a semi-infinite medium, we get

ps(rq,ro,r3) describes the probability density for a path of a

given lengths, starting atr, and ending atr;, to pass
throughr,. This quantity is normalized:

f drps(r,ra,r3)=1, (C4)

where the integration is performed over the volume of disor-

dered medium.
As the Green functioi is known[Eq. (C2)], the calcu-
lation of pg(rq,ro,r3) is straightforward. For diffusely re-

flected paths, assuming that the first and the last scattering

events take place at=1, we obtain

(CH

372
A

16z
pS(Iiril)Eps(r)ZK Eexi< -

where A— = is the surface of the semi-infinite medium.

Equation(C5) defines the probability density for a diffusely
reflected path of lengtk to pass through a vicinity of some
pointr={x,y,z}.

Generalizing definition opg, we define the probability
density for a path of lengtistarting at; and ending at, to
pass consequently through andr3:

2 s
r{,fo,rs,r )=—fd
Ps(F1,72.73,74 2G(r1.1a.9)J0 p

s—p
X fo dqG(ry,r,p)G(ry,r3,q)

XG(rz,rs,S—p—q). (Co)

1 9
AZ? 2471282

ps(|,r,r',|)Eps(r,l”)=
" Z+JAR?+AZ?
JAR?+AZ?

3
Xexp{ ~ a2+ JARZ+ AZ?)2

Z+JAR?+Z%
JAR? + 7?2

><exp[ - %(u VAR + 22)2” , (C8

wherer={R,z},AR=R—-R’,Az=z-7",Z=2+7".

Although Egs.(C5) and(C8) have been found for a non-
absorbing medium, it is easy to show that these results hold
in the presence d$patially-homogeneowsbsorption as well.
This stems from the fact that the attenuation of wave in a
homogeneously absorbing medium depends only on the path
length while being independent of the pagjieometry As a
consequence, the Green functideg. (C2)] should be mul-
tiplied by a factor exp{sd/l,), wherel, is the absorption
length. This factor, however, disappears after the substitution
of the Green functior{(C2) in Egs. (C3) and (C6). Conse-
quently,pg(r) andpg(r,r") are independent df, and remain
unchanged.
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