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Temporal fluctuations of waves in weakly nonlinear disordered media
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We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of
Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered
wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a
certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous
fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the
system ‘‘coherent wave1 nonlinear disordered medium.’’ The feedback is provided by the multiple scattering.
The development of instability is independent of the sign of nonlinearity.
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I. INTRODUCTION

Scattering of waves in disordered media has proved to
a nontrivial topic possessing intriguing and still not com
pletely understood features@1–5#. Accordingly to the
strength of disorder, one observes a variety of propaga
regimes ranging from ballistic transport, through single sc
tering and wave diffusion, to the Anderson localization.
this paper we are interested in the regime of wave diffusi
corresponding to a relatively strong disorder, which is, ho
ever, still largely insufficient to bring the system to the l
calization transition (kl@1, wherek is a wave number in the
medium, andl is a mean-free-path!.

It is well known, that multiple scattering of coherent wa
in a disordered medium results in a complicated spatial
tensity distributionI (r ,t) known as a ‘‘speckle pattern.’’ The
speckle pattern is highly irregular and appears random to
eye. It is now well established that the speckle pattern ex
its large intensity fluctuations@6–8# ^dI (r ,t)2&.^I (r ,t)&2,
originating from the interference of partial waves arriving
r with completely randomized phases. Here the angu
brackets ^•••& denote ensemble averaging, anddI (r ,t)
5I (r ,t)2^I (r ,t)&. Besides, the speckle pattern posses
nontrivial long-range spatial correlationCdI(r ,Dr )5^dI (r
2Dr /2,t)dI (r1Dr /2,t)& even forDr . l . This correlation is
due to interaction of diffusing modes@9–12#. If the points
r6Dr /2 are far enough from the boundaries of the mediu
CdI}1/Dr . Recently, it has been shown that in a particu
case of a point source of waves embedded inside a d
dered medium, there exists an infinite-range contribution
CdI(r ,Dr ) originating from scattering events taking place
the immediate neighborhood of the source@13#. This contri-
bution is highly sensitive to the short-distance properties
disorder, as well as to the source size and shape@14#.

If the scatterers in the medium are allowed to mo
I (r ,t) fluctuates with time, and the statistics of these fluct
tions is also a subject of active research. A wave propaga
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in a disordered, multiple-scattering medium undergoe
large number of scattering events, and hence the scatt
intensity is highly sensitive to displacements of scatter
@15–17#. Consequently, the decay of the intensity autocor
lation function CdI(r ,t)5^dI (r ,t)dI (r ,t1t)& is consider-
ably faster than in the single-scattering case@18–20#. Re-
cently, long-range autocorrelation function of intens
fluctuations has been measured@21#, and the existence of the
universal conductance fluctuations~analogous to that in dis
ordered conductors! has been demonstrated@22# for optical
waves. Theoretical analysis of the temporal correlation fu
tion of multiple-scattered waves has been extended to am
fying disordered media@23#, as well as to the case of intens
incident waves producing flows of scatterers in the dis
dered medium @24,25#. An additional contribution to
CdI(r ,t), originating from scattering in the immediat
neighborhood of source and/or detector, decaying m
slower than all the previously known contributions, is pr
dicted to exist@14#.

High sensitivity of multiple-scattering speckle patterns
scatterer motion gave rise to a new technique for study
the scatterer dynamics in disordered, turbid media, the
called ‘‘diffusing-wave spectroscopy’’~DWS! @19,26–29#.
The latter is now widely applied in concentrated colloid
suspensions@19,26–30#, foams@31–35#, emulsions@36–38#,
granular @39–41#, and biological@42–44# media. Besides,
the DWS has been extended to macroscopically hetero
neous turbid media, providing a tool for imaging of dynam
heterogeneities@45–47# and visualization of scatterer flow
@47–49# in the bulk of the medium. A generalization of DW
technique has been also accomplished for anisotropic di
dered media@50–52#. Recently, the DWS approach has be
extended to nonergodic turbid media@53,54#.

The above-mentioned, extensive studies of temporal fl
tuations of multiple-scattered waves, as well as the numer
application of DWS, are all restricted tolinear disordered
media. In general, little information is available on the su
ject of multiple scattering innonlinear disordered media.
Meanwhile, the question concerning the way in which t
nonlinearity affects the multiple-scattering speckle patt
still remains open and continues to attract research. Con
©2001 The American Physical Society14-1
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erable efforts have been made to understand the phenom
of coherent backscattering in disordered media with Ke
type nonlinearity@55–57#: a narrow dip has been predicte
to appear on the top of the backscattering peak. Weak lo
ization effects are shown to exist in the radiation of seco
harmonic and difference frequency@56,58–60#, though their
experimental observation failed@61#. Also studied, account
ing for disorder, is the optical phase conjugation@62–65#.
More recently, correlations in transmission and reflection
efficients of second harmonic waves have been investig
both theoretically and experimentally@66#, and the angular
correlation functions of fundamental wave in a disorde
medium with Kerr-type nonlinearity have been calculat
@67#. Despite the fact that theoretical description of wa
scattering in nonlinear media is complicated by the simu
neous presence of both disorder and nonlinearity, the s
dard diagram technique for impurity scattering has been
tended to the case of disordered medium with nonlinearity
Kerr type @68,69#.

Very recently, it has been shown that the speckle pat
resulting from the multiple scattering of coherent wave in
nonlinear disordered medium with Kerr-type nonlinearit
should be extremely sensitive to changes of scattering po
tial @70#, i.e., much more sensitive than thelinear speckle
pattern. This high sensitivity has been explained by the m
tiplicity of solutions of nonlinear wave equation@70#. The
multiplicity of solutions has been then shown to lead to
temporalinstability of the multiple-scattering speckle patte
in nonlinear medium, resulting inspontaneousfluctuations
of scattered wave with time@71#. An important prediction of
Ref. @71# is that the nonlinearity should exceed some thre
old value for the instability to develop. The threshold val
is principally determined by the absorption lengthLa , or by
the sample sizeL, if L,La . The striking feature of the es
tablished result is that the threshold value of nonlinea
tends to zero in an unbounded medium without absorpt
Purely elastic, unbounded nonlinear multiple-scattering s
tems are therefore always unstable. The physical origin
the instability is easy to understand@71#. Nonlinearity modi-
fies the phases of partial waves propagating in the medi
The phase modifications are proportional to the inten
I (r ,t) and affect the mutual interference of partial waves.
it is this interference that is responsible forI (r ,t), a sort of
feedback establishes in the medium. A small modification
I (r ,t) causes modifications of phases of partial waves wh
in their turn, produce changes ofI (r ,t), and so on. It is well
known that nonlinear wave systems with sufficiently stron
positive feedback, may become unstable@72,73#. As an ex-
ample, we cite a family of nonlinear optical systems w
two-dimensional feedback@73–76#, where spontaneous for
mation of complicated spatial structures is observed. Des
the absence of disorder, such systems exhibit transitio
seemingly chaotic dynamics with increasing nonlinear
@75,76#. An analogy can be drawn between the nonline
optical systems with two-dimensional feedback and non
ear disordered media by considering the scattering a
~three-dimensional! feedback mechanism. In the case of d
ordered media, however, the feedback is of random na
and it is therefore hopeless to expect regular spatial st
05661
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tures to form. Meanwhile, the instability can manifest its
in spontaneous fluctuations of speckle pattern. In orde
clarify the issue of instability of speckle patterns in nonline
disordered media, we consider the following questions:

~a! Can the multiple scattering provide a positive fee
back mechanism for waves propagating in a nonlinear dis
dered medium?

~b! If ‘‘yes,’’ how strong should the nonlinearity be fo
the instability to develop?

A general announcement of our principal answers to
above questions has been given in our recent letter@71#. In
the present paper, we discuss and justify the assumptions
approximations underlying our conclusions, provide t
missing details of calculations, and give a comprehens
discussion of results. Also developed and discussed is
perturbation approach to the calculation of the temporal
tocorrelation function of multiple-scattered wave in a nonl
ear disordered medium. It is important that the validity co
dition of the perturbation theory coincides with the conditi
for the instability threshold as obtained by using the se
consistent approach. In addition, we give a detailed con
eration to an experimentally important case of moving sc
terers, when the decrease of the time autocorrelation func
is due to a combined effect of spontaneous and scatte
motion-induced fluctuations of the speckle pattern.

The remainder of the paper is arranged as follows. In S
II, we introduce the nonlinear wave equation, and disc
how the path-integral approach can be applied for its an
sis. We also formulate the basic models and approximati
used throughout the paper. Section III is devoted to lin
disordered media. In this section, we provide the express
for the spatiotemporal intensity correlation functions. A
though correlations of multiple-scattered waves in linear m
dia are well studied nowadays, we present their first, to
knowledge, treatment with a simultaneous account for
sorption, boundary conditions at the sample surface,
scatterer motion. The results of Sec. III serve as a base
further calculations. In Sec. IV, we present a calculation
dephasing of waves in a nonlinear disordered medium.
calculation takes into account the fluctuations of the lo
refractive index due to nonlinear effects, as well as the lo
range spatial correlation of these fluctuations. Three ‘‘no
linear’’ contributions to the dephasing are identified in ad
tion to the usual, ‘‘linear’’ term originating directly from the
motion of scatterers. Further, in Sec. V we develop a per
bation theory for calculation of the temporal autocorrelati
function of a multiple-scattered wave, and show its failure
short correlation times, for sufficiently weak absorption.
condition of validity of the perturbation theory is establish
by comparing the linear and nonlinear contributions to
dephasing found in Sec. IV. Section VI presents an alter
tive, self-consistent approach to the calculation of the te
poral autocorrelation of scattered wave. Development of s
consistent theory requires some additional assumptio
which are also discussed in this section. In Sec. VII, the m
results of our self-consistent approach are presented and
cussed. The multiple-scattering speckle pattern is show
exhibit spontaneous fluctuations even in the absence of s
terer motion, which we interpret as a signature of its ins
4-2
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TEMPORAL FLUCTUATIONS OF WAVES IN WEAKLY . . . PHYSICAL REVIEW E63 056614
bility. A comparison of self-consistent and perturbative
sults is given, and the condition of the speckle patt
instability is shown to coincide with the condition of validit
of the perturbation theory. Finally, concluding remarks a
presented in Sec. VIII. In order to maintain the text of t
paper readable, we have chosen to collect the technica
tails of calculations in three appendices. Appendix A is d
voted to the derivation of the field-field spatiotemporal c
relation function. In Appendix B we compute the spati
temporal long-range intensity correlation function. Append
C provides the details of calculations of path distributio
rs(r ) andrs(r ,r 8) defined in Sec. IV.

II. WAVE EQUATION AND PATH INTEGRALS

We consider a scalar monochromatic wave of freque
v propagating in a random medium with Kerr-type nonli
earity. The wave amplitudec(r ,t) obeys a nonlinear wave
equation@77,78#:

$“21k0
2@«081 i«091d«~r ,t !1«2uc~r ,t !u2#%c~r ,t !50.

~1!

Herek0 is the free-space wave number,«05«081 i«09 is the
average~complex! dielectric function,d«(r ,t) is the fluctu-
ating part of the dielectric function, and«2 is the nonlinear
susceptibility@79# ~the two latter quantities are assumed
be real!. Equation~1! is valid only if d«(r ,t)1«2uc(r ,t)u2

does not change significantly on the time scale ofv21. The
expression in the square brackets of Eq.~1! can be consid-
ered as some ‘‘effective’’ dielectric function of the medium
General analysis of Eq.~1! for arbitrary relation between
various terms comprising this function constitutes a form
dable task, and is not a purpose of this paper. We assum
following hierarchy:

^«2
2uc~r ,t !u4&!^d«2~r ,t !&, ^«2

2uc~r ,t !u4&!«08 ,

u«09u!u«08u . ~2!

In other words, we assume that the role of nonlinearity is l
significant than that of disorder, and that absorption is w
allowing multiple scattering of waves in the medium. It
then convenient to define the effective refractive indexn0

5(«08)
1/2, the absorption lengthl a5n0 /(k0«09), and the non-

linear coefficientn25«2 /(2n0), which determines the non
linear correction to the~linear! refractive index of the me-
dium: n(r ,t)5n01n2I (r ,t), whereI (r ,t)5uc(r ,t)u2 is the
wave intensity.

In this paper, we study the fluctuations of the solution
Eq. ~1! with time t. In a linear medium («250), these fluc-
tuations can only be due to random fluctuations ofd«(r ,t)
with time. The fluctuations ofc(r ,t) are commonly charac
terized by the autocorrelation function Cc(r ,t)
5^c(r ,t)c* (r ,t1t)&. We assume that this autocorrelatio
function is independent oft, which implies that for fixedr ,
c(r ,t) represents a stationary random process~this is obvi-
ously true if the sample geometry and the source distribu
do not change with time, and ifd«(r ,t) is a stationary ran-
dom process!. We taked«(r ,t) to be a Gaussian random
field with zero mean and the correlation functio
05661
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Cd«(Dr ,t)5^d«(r2Dr /2,t)d«(r1Dr /2,t1t)&. For a me-
dium composed of pointlike scatterers undergoing Brown
motion with a diffusion coefficientDB @18,20#,

Cd«~Dr ,t!5
4p/~k4l !

~4pDBt!3/2
expS 2

Dr 2

4DBt D , ~3!

wherek5k0n0, and the mean-free-pathl ! l a is introduced
~a weak scattering limitkl@1 is assumed!. A natural time
scale for scattering of waves in the medium described by
~3! is set by the characteristic time needed for a scattere
move a distance of the order of the wavelength:t0
5(4k2DB)21. From here on, we will be interested in sho
correlation timest!t0.

In the linear case («250), several approaches have be
elaborated to analyze Eq.~1!. We mention the diagrammati
techniques@80,81#, theory of radiative transfer@7#, and the
method of path integrals@82,83#. The three approaches ar
known to give equivalent results forCc at t!t0. In the
present paper, we adopt the method of path integrals that
originally proposed in the framework of quantum electrod
namics@84#, but later has been successfully used in vario
areas of physics@85#, and, in particular, for the analysis o
wave scattering problems@82,83#. The method is based o
the fact that the solutionc(r ,t) of the wave equation~1! can
be written in a form of a functional integral, with integratio
performed over all possible trajectories~paths! going from
the source of waves tor @82#. Since in the weak scatterin
limit ( kl@1) different trajectories can be considered ind
pendently, it appears that the correlation functionCc reduces
to the following integral@26–29#:

Cc~r ,t!5I 0E
0

`

P~r ,s!expF2
1

2
^Dw2~t!&sGds, ~4!

whereI 0 is the average intensity in a nonabsorbing mediu
P(r ,s) is a weight coefficient of paths of lengths, and
^Dw2(t)&s denotes the squared phase differenceDw(t,t)
5w(t1t)2w(t), averaged over various realizations of di
order, and over all possible paths of the same lengths. From
here on, we denote such an averaging by^•••&s . Note that
^Dw(t)&s50 for the model of Brownian pointlike scatterer
Meanwhile,@27–29#

^Dw2~t!&s
(0)5

t

t0

s

l
, ~5!

where the superscript (0) denotes the linear case. It is w
noting that ^Dw2(t)&s

(0) does not depend neither on th
sample geometry, or on the source and detector positions
value is only determined by the scatterer dynamics~through
the single-scattering correlation timet0), and the path length
s. In contrast,P(r ,s) can only be calculated if the samp
geometry, source distribution, and detector positionr are
specified. In what follows, we restrict our analysis to a sem
infinite medium occupying the half-spacez.0, and illumi-
nated by a plane monochromatic wave incident atz50. For
s@ l , P(r ,s) becomes@27–29,86#
4-3
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S. E. SKIPETROV PHYSICAL REVIEW E 63 056614
P~r ,s!5S 3z2

4p ls3D 1/2

expS 2
3z2

4sl
2

s

l a
D . ~6!

Once the field correlationCc(r ,t) is known, the autocorre
lation of intensity fluctuationsCdI(r ,t)5^dI (r ,t)dI (r ,t
1t)& can be found applying the factorization approximatio
CdI(r ,t)5uCc(r ,t)u2 @87#.

Combining together Eqs.~4!–~6!, one obtains the normal
ized autocorrelation function of multiple-scattered wave in
semi-infinite disordered medium:

g1
(L)~r ,t!5

Cc~r ,t!

Cc~r ,0!
5expH 2Fa~t!2

l

La
Gzl J , ~7!

where the superscript~L! denotes the linear case,a2(t)
53t/(2t0)1 l 2/La

2 , andLa5( l l a/3)1/2@ l . For the diffusely
reflected wave, we assumez. l and get

g1
(L)~ l ,t![g1

(L)~t!5expH 2a~t!1
l

La
J . ~8!

From here on, we will useg1(r ,t) to denote the normalized
autocorrelation function at a pointr inside the medium,
while g1(t) — for the normalized autocorrelation functio
of diffusely reflectedwave. The superscripts~L! and (NL)
will be used to distinguish between linear and nonline
cases.

Now we turn to the nonlinear medium. Strictly speakin
the method of path integrals cannot be applied for the an
sis of Eq.~1!, once«2Þ0. The failure of the path-integra
technique follows from the fact that this approach relies
the superposition principle, which is not valid for waves
nonlinear media. However, if the nonlinearity is we
@which is ensured by the first two inequalities of Eq.~2!#, Eq.
~4! is still approximately valid provided that its main ingre
dientsP(r ,s) and^Dw2(t)&s are computed with account fo
nonlinear effects. To simplify such a calculation, we assu
that the nonlinearity is sufficiently weak to validate the fo
lowing two assumptions:

~i! Propagation of waves in a weakly nonlinear disorde
medium is diffusive with a mean-free-pathl unaffected by
the nonlinearity. This implies that nonlinear refraction
negligible at distances of orderl , and consequently, tha
Dn2kl!1, whereDn5n2I 0, andI 0 is the average intensity
in the absence of absorption. This assumption is an alte
tive formulation of the fact that the role of nonlinearity
much less significant than that of disorder@see also the firs
two inequalities of Eq.~2!#.

~ii ! Intensity of the third harmonic remains always mu
smaller than the intensity of the fundamental wave. This
plies either thatc(r ,t) is considered as a complex quanti
@in this case, Eq.~1! is a nonlinear Schro¨dinger equation,
uc(r ,t)u2 is time-independent, and the third harmonic is n
generated at all#, or that the medium has a sufficient degr
of dispersion for the phase matching condition@77,78# to be
violated: uDku l @1 with Dk5k323k andk3 being the wave
number at frequency 3v.
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Assumption~i! allows us to consider the path distributio
P(r ,s) being unaffected by nonlinearity. The only object
be recalculated, accounting for nonlinear effects, is th
^Dw2(t)&s . Before going into an explicit calculation o
^Dw2(t)&s , we devote the next section to a brief derivatio
of some important results for linear medium.

III. CORRELATIONS IN A LINEAR MEDIUM

As indicated above, we consider a monochromatic pla
wave incident at the surfacez50 of a semi-infinite medium
occupying the half-spacez.0. The average intensity atz
. l can be then found in the diffusion approximation:@7,88#
^I (r ,t)&5I 0exp(2z/La). The spatiotemporal correlatio
function of the field is given by a solution of the Beth
Salpeter equation~see Appendix A for details of the calcu
lation!:

Cc~r ,Dr ,t!5^c~r2Dr /2,t !c* ~r1Dr /2,t1t!&

5I 0

sin~kDr !

kDr
expH 2

Dr

2l
2a~t!

z

l J . ~9!

Let us now consider the correlation functions of intens
fluctuations. In addition todI (r ,t), which is the deviation of
intensity from its average value, it is convenient to defi
DI (r ,t,t)5I (r ,t1t)2I (r ,t), which is the change of the lo
cal intensity during the time intervalt. While ^dI (r ,t)&
5^DI (r ,t,t)&50, the correlation functionsCdI(r ,Dr ,t) and
CDI(r ,Dr ,t)5^DI (r2Dr /2,t,t)DI (r1Dr /2,t,t)& for Dr
, l can be found in the factorization approximation:

CdI~r ,Dr ,t!5uCc~r ,Dr ,t!u2, ~10!

CDI~r ,Dr ,t!52@CdI~r ,Dr ,0!2CdI~r ,Dr ,t!#. ~11!

Both correlation functions~10! and ~11! decrease expo
nentially with Dr / l , and thus become negligible forDr . l .
Intensity correlation persists, however, even for two poi
separated by a distanceDr . l . This correlation is due to the
diffusive nature of wave transport in the medium and can
found either using the Langevin approach@9,11# or applying
diagrammatic methods@10,12#. We give the details of calcu
lations in Appendix B, the final results are

CdI~r ,Dr ,t!

5
3

~kl !2
I 0

2E
0

`

dK K QS K,AK21 l 2/La
2,

z

l
,
Dz

l
,a~t! D

3J0~KDR/ l !, ~12!

CDI~r ,Dr ,t!5
6

~kl !2
I 0

2E
0

`

dK K DQ

3S K,AK21 l 2/La
2,

z

l
,
Dz

l
,a~t!,a~0! D

3J0~KDR/ l !. ~13!
4-4
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Here we use the cylindrical coordinates:r5$R,z%, J0 is the
Bessel function of zeroth order, the functionQ is defined in
Appendix B, and

DQ„ . . . ,a~t!,a~0!…5Q„ . . . ,a~0!…2Q„ . . . ,a~t!….
~14!

Due to a rather complicated structure of the functionQ
~see Appendix B!, further calculations can be done only a
proximately. In the case ofz6Dz/2,Dr ! l /a(t), we get
a

n

iv
in

s
s
te
m

05661
CdI~r ,Dr ,t!.
3

4

I 0
2

~kl !2

l

zg
F 1

x
2

1

A11x2GexpF22a~t!
z

l G ,
~15!

wherezg is the geometrical average ofz coordinates of the
two points for which the correlation is computed:zg

5Az22Dz2/4 andx5Dr /(2zg). For a(t)50, Eq. ~15! is
exact. If x,1, the correlation behaves essentially as 1/Dr ,
while for x.1 it becomes proportional tozg

2/Dr 3. For the
correlation function of Eq.~13! we find
CDI~r ,Dr ,t!.H 4@a~t!2a~0!#~z/ l !CdI~r ,Dr ,0!, 2a~t!~z/ l !!1,

2CdI~r ,Dr ,0!, 2a~t!~z/ l !@1.
~16!
ngth
h
of

ces

-

red

th
IV. DEPHASING OF WAVES IN A NONLINEAR MEDIUM

Consider a single wave path of lengths going from the
source of waves to some pointr . The phase acquired by
wave traveling along such a path can be written as

w~ t !5E
0

s

k0n@r ~s1!,t#ds1 , ~17!

where the integration is along the path, andn(r ,t)5n0
1n2I (r ,t). The squared differenceDw(t,t)5w(t1t)
2w(t), averaged over various realizations of disorder, a
over all possible paths of lengths, is found directly from Eq.
~17!:

^Dw2~t!&s5(
j 50

3

^Dw2~t!&s
( j ) , ~18!

where the four contributions corresponding toj 50, . . . ,3
originate from different physical processes. Below, we g
explicit expressions of these terms and discuss their orig

The first term in Eq.~18!, ^Dw2(t)&s
(0) is the linear term

given by Eq.~5!. The next three terms, namely, the term
corresponding toj 51, 2, and 3, are absent in the linear ca
and only appear because of nonlinear nature of wave in
action with the medium. Explicit expressions for these ter
are

^Dw2~t!&s
(1)5K 2n2

n0l

t

t0
E

0

s

^I ~r !&ds1L
s

5
2n2

n0

t

t0
Š^I ~r !&‹s

s

l
,

~19!

^Dw2~t!&s
(2)5K p

n0
k0n2

2E
0

s

CDI~r ,0,t! ds1L
s

5
p

n0
k0ln2

2^CDI~r ,0,t!&s

s

l
, ~20!
d

e
.

e
r-
s

^Dw2~t!&s
(3)5K k0

2n2
2E

0

sE
0

s

CDI~r ,Dr ,t!ds1ds2L
s

5~k0l !2n2
2^CDI~r ,Dr ,t!&sS s

l D
2

. ~21!

Here the integrations are assumed along wave paths of le
s@ l @in Eq. ~21!, both integrals are along the same pat#.
Equation~20! originates from the short-range correlation
intensity fluctuations@see Eqs.~9!–~11!#:

^Dw2~t!&s
(2)5k0

2n2
2^CDI~r ,0,t!&sE

0

s

dsE
2 l

l

d~Ds!

3Fsin~kDs!

kDs G2

expS 2
Ds

l D , ~22!

where the wave path is assumed to be ballistic at distan
shorter thanl . Equation~22! reduces to~20! for kl@1. Next,
the term given by Eq.~21! is due to the long-range correla
tions of intensity fluctuations@see Eq.~13!#. The averages
entering into the right-hand sides of Eqs.~19!–~22! are

Š^I ~r !&‹s5E d3rrs~r !^I ~r !&, ~23!

^CDI~r ,0,t!&s5E d3rrs~r !CDI~r ,0,t!, ~24!

^CDI~r ,Dr ,t!&s5E d3r1E d3r2rs~r1 ,r2!CDI~r ,Dr ,t!,

~25!

where the integrations are over the volume of the disorde
medium, andr1,25r6Dr /2. In Eqs.~23!–~25!, rs(r ) is the
probability density for a path of lengths, to pass through the
vicinity of r , andrs(r1 ,r2) is the probability density for the
path to pass consequently through the vicinities ofr1 andr2.
These two ‘‘path distributions’’ should be calculated wi
4-5
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account for a particular geometry of disordered sample
source of waves. Once the geometry is fixed, the calcula
is straightforward. For the case of a plane wave incid
upon a semi-infinite disordered medium, the calculations
rs(r ) andrs(r1 ,r2) are presented in Appendix C.

Let us discuss briefly the physical origins of nonline
contributions to the dephasing given by Eqs.~19!–~21!.
^Dw2(t)&s

(1) describes the change of the effective wave nu
ber in the nonlinear medium:k5k0n0→k(r )5k0@n0
1n2^I (r ,t)&#. This contribution can be either positive o
negative, depending on the sign ofn2, but its absolute value
is always much smaller than̂Dw2(t)&s

(0) , as long asuDnu
!n0 . ^Dw2(t)&s

(1) can therefore only cause a small corre
tion to the linear correlation function. The next contributio
^Dw2(t)&s

(2) originates from fluctuations of the local inten
sity, while ^Dw2(t)&s

(3) is due to the long-range correlatio
of these fluctuations. An important difference between
linear term~5!, the first nonlinear term~19!, and the two last
nonlinear terms~20! and ~21!, is that the latter terms do no
depend explicitly ont0. The terms given by Eqs.~20! and
~21! are determined by theintensity fluctuations, and not by
the scatterer displacements. This might seem to be a m
ingless statement, as the intensity fluctuations are, in t
turn, caused by the scatterer motion. The important poin
that the scatterer motion is not the only possible reason
the fluctuations of intensity with time. Weak, spontaneo
fluctuations ofI (r ,t) ~due to thermal fluctuations of variou
parameters, vibrations in the experimental setup, fluctuat
of the incident wave, etc.! are inevitable in real physica
systems. Equations~20! and ~21! provide a mechanism fo
this spontaneous and generally weak fluctuations to af
the dephasinĝ Dw2(t)&s and, consequently, the tempor
correlation function of scattered wave.

V. PERTURBATION THEORY

As stated in the title, the present paper is devoted
weaklynonlinear disordered media. We limit ourselves to
weak nonlinearity, as otherwise the problem becomes
involved. Above, we have already mentioned that we assu
Dn2kl!1, and that this condition allows us to consider t
transport of average intensity to remain unaffected by
nonlinearity@assumption~i! of Sec. II#. This allows us to use
‘‘linear’’ results, ^I (r )&5I 0exp(2z/La) and Eqs.~C5! and
~C8! of Appendix C, for^I (r )&, rs(r ), andrs(r1 ,r2) in Eqs.
~23!–~25!. It seems then natural to assume thatCDI(r ,0,t)
andCDI(r ,Dr ,t) are also close to their linear values. We c
therefore replace these correlation functions in Eqs.~24! and
~25! by the expressions found in Sec. III. Then, making u
of Eqs.~10!–~13!, and performing necessary integrations,
obtain from Eqs.~19!–~21!:

^Dw2~t!&s
(1)52Dn

t

t0
H 12HS a~0!A s

12l D J s

l
, ~26!

^Dw2~t!&s
(2)52pk0lDn2H HS a~t!A s

3l D
2HS a~0!A s

3l D J s

l
, ~27!
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^Dw2~t!&s
(3)56Dn2S„a~t!As/ l ,a~0!As/ l …S s

l D
3/2

.

~28!

Here H(x)5Apx exp(x2)@12Erf(x)# and n051 is assumed
for simplicity. The functionS(u,v) in Eq. ~28! is

S~u,v !59E
0

`

dRRE
0

`

dKKE
0

`

dzE
0

2z

d~Dz! f ~z,Dz,R!

3DQ~K,AK21v2,z,Dz,u,v !J0~KR!, ~29!

f ~z,Dz,R!5
2z1AR21Dz2

AR21Dz2
expF2

3

4
~2z1AR21Dz2!2G

2
2z1AR214z2

AR214z2
expF2

3

4
~2z1AR214z2!2G .

~30!

Unfortunately, integrations in Eq.~29! cannot be performed
in the general case. We find, however, the following appro
mate results:

S~u,v !.5
~u2v !, u2v<1, v<1,

1, u2v.1, v<1,

~u2v !v23, u2v<1, v.1,

v23, u2v.1, v.1.

~31!

Here numerical factors of order unity are omitted before e
of the four asymptotic expressions.

While approximate, the above results enable one to co
pute the temporal autocorrelation functiong1

(NL)(t) of dif-
fusely reflected wave numerically using Eqs.~4!, ~6!, and
~18!:

g1
(NL)~t!5W@^Dw2~t!&s#/W@0#, ~32!

W@^Dw2~t!&s#5E
0

`

P~ l ,s!expF2
1

2
^Dw2~t!&sGds.

~33!

We present the results of the calculation in Fig. 1 for fix
Dn, k0l , and the values of the inverse absorption lengthl /La
indicated near each curve. The ‘‘linear’’ correlation fun
tions, corresponding to the same three values of the abs
tion length, and toDn50, are shown by dashed lines. F
weak absorption (l /La50, 1023), the initial ~i.e., at short
correlation delay timest) decrease of the ‘‘nonlinear’’ auto
correlation function is much faster than that of the linear o
Hence, our perturbation approach fails at short times. Inde
the results of this section are based on the assumption
CDI(r ,0,t) and CDI(r ,Dr ,t) in the nonlinear medium are
close to their values in the linear one. Applying the facto
ization approximation, we find that this implies that
2ug1

(NL)(t)u2'12ug1
(L)(t)u2. Although this condition seems

to hold well for sufficiently larget, it can be violated at
small t, where, as follows from Fig. 1, 12ug1

(NL)(t)u2 can
4-6
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become much larger than 12ug1
(L)(t)u2, if absorption is suf-

ficiently weak.
To estimate the region of validity of our perturbation a

proach, we require that the linear contribution to the deph
ing ^Dw2(t)&s given by Eq. ~5!, should be considerably
greater than the sum of nonlinear contributions@Eqs. ~26!–
~28!#. As the longest path length contributing to the integ
of Eqs.~4! and~33! is s ; l /a2, we obtain the conditions o
validity of the perturbation theory in the form:

Dn2a~t!22@k0l 1a~t!21#!1. ~34!

Since a(t) is an increasing function of its argument, an
a(0)5 l /La , condition Dn2(La / l )2@k0l 1La / l #!1 ensures
Eq. ~34! at anyt. It is the case for the upper curve of Fig.
corresponding tol /La5531023. For such a strong absorp
tion, the perturbation theory is valid at anyt, and the non-
linear autocorrelation function is close to the linear result.
contrast, ifDn2(La / l )2@k0l 1La / l #.1, the perturbation ap
proach can be applied only for sufficiently long correlati
timest.tc , where the critical timetc is determined by Eq.
~34!. For the lower curve of Fig. 1, corresponding tol /La
50, we find (tc /t0)1/2'231023. It is worthwhile to note
that in the absence of absorption, even an infinitely sm
nonlinearity (Dn→0) suffices for the perturbation theory t
fail at t/t0→0. Our condition of validity of the perturbation
approach~34! is consistent with the result of Spivak an
Zyuzin @70#, who have shown that the perturbation analy
of the sensitivity of speckle pattern in a nonlinear disorde
medium to changes of scattering potential fails
Dn2(L/ l )3.1, whereL@ l is the typical size of the medium

VI. SELF-CONSISTENT ANALYSIS

As demonstrated in the previous section, the perturba
theory fails to describe the temporal autocorrelation funct
of wave diffusely reflected from a nonlinear medium fort
,tc , wheretc is defined by Eq.~34!. To calculateg1

(NL)(t)

FIG. 1. Normalized temporal autocorrelation function of a wa
diffusely reflected from a semi-infinite nonlinear disordered m
dium, calculated using perturbation theory forDn51024, k0l
5100, and the values ofl /La indicated near each curve~solid
lines!. Dashed lines show corresponding results for a linear med
(Dn50).
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at such short times, one has to use a nonperturbative,
consistent analysis. However, the possibility of performi
such an analysis is considerably limited by the mathemat
complexity of the considered problem. To make the se
consistent analysis possible, we adopt the following two
ditional assumptions:

~iii ! The statistics of a wave field scattered in a wea
nonlinear disordered medium, is close to Gaussian. Co
quently, the factorization approximation holds in a weak
nonlinear medium:CdI(r ,t).uCc(r ,t)u2.

~iv! The functional form of the r dependence of
g1

(NL)(r ,t) is the same as that ofg1
(L)(r ,t): g1

(NL)(r ,t)
5exp@2b(t)z/l#, where b(t) is some unknown function
which can depend not only ont but also on other parameter
of the problem~namely, onl /La , k0l , Dn).

Strictly speaking, the above assumptions define a sor
perturbation theory, but now we do not limit the values
deviations of intensity and field correlation functions fro
their values in the linear case. Instead, we assume tha
nonlinearity does not cause significant modifications of
statistics of scattered waves@assumption~iii !# and of the
functional formof the field correlation function@assumption
~iv!#. Note that now the autocorrelation functiong1

(NL)(r ,t)
can deviate significantly fromg1

(L)(r ,t). Condition~iv! fixes
the functional form of this deviation, but implies no con
straints on its absolute value.

Obviously, both the assumptions~iii ! and ~iv! require the
nonlinearity to be weak. Assumption~iii ! is justified under
the same conditions as~i! ~see Sec. II!, since the Gaussian
statistics of thetotal scattered wave fieldc(r ,t) is a conse-
quence of the complete randomization of phases ofpartial
waves arriving atr . The reason for the randomization is th
the typical distancel between individual scattering events
a multiple-scattering sequence is much larger than the wa
length (kl@1) @8#. Obviously, such a mechanism of pha
randomization is equally effective in both linear and weak
nonlinear media, as long as~i! holds.

To justify the ansatz of assumption~iv!, we apply Eq.~4!
and writeg1

(NL) as

g1
(NL)~r ,t!'S 3z2

4p l D
1/2

expS z

La
D E

0

s1(t) 1

s3/2
expS 2

3z2

4lsDds,

~35!

where we assumed thats/ l a1(1/2)^Dw2(t)&s increases
monotonically with s and becomes of order unity ats
5s1(t)@s05z2/(2l ). After performing integration, Eq.
~35! can be approximately rewritten as exp(z/La)$1
2z@3/(p ls1)#1/2%.exp@2b(t)z/l# with bz/ l .z( ls1)21/2

2z/La!1. In the opposite limit ofbz/ l @1, g1
(NL)(r ,t) van-

ishes and the functional form of itsz dependence is of no
importance. Anyway, it will be seen from the following tha
the exact functional form of ther dependence ofg1(r ,t) is
not of crucial importance, sinceg1 is integrated over the
whole medium during the calculation of the correlation fun
tion of diffusely reflected wave.

Making use of Eqs.~19!–~21! and relying on the assump
tions ~iii ! and~iv!, we recalculate the nonlinear contribution
to the dephasinĝDw2(t)&s . Due to the assumption~iv!, the

-

m
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result can be obtained from Eqs.~26!–~28! by a simple sub-
stitution: a(t)→b(t)1a(0). Recalling thata(0)5 l /La ,
we obtain

^Dw2~t!&s
(1)52Dn

t

t0
F12HS l

La
A s

12l D G s

l
, ~36!
g
-

-

-
b

t
ce

by

la-

to
-

05661
^Dw2~t!&s
(2)52pk0lDn2H HS S b1

l

La
DA s

3l D
2HS l

La
A s

3l D J s

l
, ~37!
^Dw2~t!&s
(3).6Dn235

b~s/ l !2, bAs/ l<1, ~ l /La!As/ l<1,

~s/ l !3/2, bAs/ l .1, ~ l /La!As/ l<1,

b~La / l !3As/ l , bAs/ l<1, ~ l /La!As/ l .1,

~La / l !3, bAs/ l .1, ~ l /La!As/ l .1.

~38!
t-

m,

u-
e-
ent

e

As follows from Eqs.~36!–~38!, the nonlinear dephasin
depends on the unknown functionb. Since the temporal au
tocorrelation function of diffusely reflected waveg1

(NL)(t)
5exp@2b(t)# is determined byb as well, Eqs.~32! and~33!
allow us to formulate a self-consistent equation forb:

exp@2b~t!#5F„b~t!…, ~39!

whereF(b)5W@^Dw2(t)&s#/W@0#, W@ . . . # is defined by
Eq. ~33!, and^Dw2(t)&s is a sum of terms given by Eqs.~5!
and ~36!–~38!. Equation~39! is the main result of our self
consistent analysis. Although the functional form ofF(b) is
rather complicated, and Eq.~39! cannot be solved analyti
cally, the numerical solution is straightforward and can
carried out for any values ofDn, l /La , k0l , andt. Equation
~39! can be considered as a self-consistent equation for
autocorrelation function of diffusely reflected wave, sin
b(t) and g1

(NL)(t) are directly related. It is worthwhile to
note that in the absence of nonlinearity (Dn50), Eq. ~39!
yields b(t)5a(t)2 l /La , and hence Eq.~8! is recovered
Lor g1

(L)(t).

VII. RESULTS AND DISCUSSION

We start the analysis of Eq.~39! from the case of immo-
bile scatterers, taking a limit oft/t0→0. We denote the
autocorrelation functions corresponding to this limit
g1

(L),(NL)(01) in order to distinguish them fromg1
(L),(NL)(0),

which correspond tot50.1 Obviously, g1
(L)(01)5g1

(L)(0)
51. In a nonlinear medium, Eqs.~37! and ~38! can still
contribute to the dephasing even fort/t0→0. These contri-
butions are insensitive to the sign ofDn. A corresponding
value of b(01) and, consequently, of the field autocorre

1Although we take the limit oft/t0→0, we assumet@Tjump

whereTjump@2p/v is the typical time required for the system
‘‘jump’’ from one solution of Eq.~1! to another. The time autocor
relation functiong1

(NL)(t) is independent oft for t@Tjump and
t/t0→0 @71#.
e

he

tion function g1
(NL)(01) can be found by solving Eq.~39!

numerically. In Fig. 2, we plot the left-hand and the righ
hand sides of Eq.~39! for fixed uDnu51024, k0l 5100, and
for several values ofl /La . If absorption is strong (l /La*3
31023 for considereduDnu andk0l ), Eq. ~39! has a unique
solution b(01)50, which corresponds tog1

(NL)(01)51.
However, a second solutionb(01).0 appears for suffi-
ciently weak absorption (l /La,331023). The point of ap-
pearance of the second solution is abifurcation point of Eq.
~39!. To choose the solution realizable in a physical syste
we note that the first solution@b(01)50# exists only for
t/t050, and disappears at finitet/t0, sinceF(0),1 for
t/t0.0. This solution is therefore inaccessible by contin
ity, and ‘‘unstable’’ with respect to small scatterer displac
ments. The physically realizable solution should repres
the limit of b(t) for t/t0→0, which is given by the second
solution of Eq. ~39!. It is therefore this solution that on
expects to be realized in a real physical system.

The fact that Eq.~39! can have a positive solution

FIG. 2. Graphical solution of Eq.~39! at t/t0→0. Solid lines
showF@b(01)# for uDnu51024, k0l 5100, and the values ofl /La

indicated near each curve. Dashed line is exp@2b(01)#. If absorp-
tion is weak (l /La50, 1023, and 231023), Eq. ~39! has two so-
lutions b(01)50 and b(01).0, while for strong absorption
( l /La5331023 and 531023), the second solution disappears.
4-8
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TEMPORAL FLUCTUATIONS OF WAVES IN WEAKLY . . . PHYSICAL REVIEW E63 056614
b(01).0 is a very important issue, sinceb(01).0 leads
to g1

(NL)(01)5exp@2b(01)#,1. A value of the temporal au
tocorrelation function, which is less than unity, is common
associated with temporal fluctuations of scattered waves
the considered case, however, the reason for these flu
tions is not the motion of scatterers, as the limit oft/t0
→0 corresponds to immobile scatterers. The fluctuations
spontaneousand represent a clear signature ofinstability of
the multiple-scattering speckle pattern.2

Despite a rather complicated structure of the funct
F(b) in Eq. ~39!, a relation between the parameters of t
problem corresponding to the onset of the speckle pat
instability can be found analytically. As follows from Fig. 2
the initial @at b(01)50# decay of F@b(01)# should be
faster than the decay of exp@2b(01)#, for the second solution
of Eq. ~39! to appear. A surface in a three-dimensional sp
of the problem parametersDn, l /La , k0l , separating the
stable @b(01)50# and unstable@b(01).0# regions, is
therefore given by the equation

]

]b~01!
F„b~01!…ub(01)50521. ~40!

Recalling thatLa / l @1, k0l @1 is assumed, we obtain from
Eq. ~40!:

p5Dn2S La

l D 2Fk0l 1
La

l G.1, ~41!

where we introduce a control parameterp, and a numerical
factor of order unity is omitted. Ifp,1, the multiple-
scattering speckle pattern is stable@g1

(NL)(01)51#, while
for p.1, an instability shows up leading tog1

(NL)(01),1.
A striking feature of Eq.~41! is that p can become large
than unity even for very smalluDnu, provided that the exten
sive parameterLa / l is large enough. Our condition of th
speckle pattern stabilityp,1 agrees with the condition o
validity of the perturbation theory developed in Sec. V@Eq.
~34!#, evaluated att/t050. This readily explains the failure
of the perturbation theory for short correlation times a
weak absorption: perturbation approach is not suitable
description of unstable regimes. Moreover, the fact that
condition of validity of the perturbation theory and th
speckle pattern stability condition agree indicates that
additional assumptions~iii ! and~iv! of Sec. VI are not essen
tial for obtaining unstable regimes.

To illustrate our self-consistent theoretical framework,
solve Eq.~39! numerically fort/t0→0, and plot the result-

2Obviously, Eq.~1! cannot be used to study the dynamics of spo
taneous fluctuations. Our analysis only allows the revealing of
presence of such fluctuations, and to calculate their time autoc
lation functiong1

(NL)(t) for 2p/v!Tjump!t.
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ing temporal autocorrelation function of diffusely reflecte
wave,g1

(NL)(01), in Fig. 3. As discussed above,g1
(NL)(01)

,1 corresponds to spontaneous fluctuations of scatte
waves, which is a manifestation of the speckle pattern in
bility. It follows from Fig. 3, that in accordance with Eq
~41!, an infinitely small uDnu is sufficient to make the
speckle pattern unstable in the absence of absorption, wh
certain threshold degree of nonlinearity is required to de
bilize the speckle pattern in a dissipative medium. In t
absence of absorption, Eq.~39! always has two solutions
b(01)50 and b(01).0, corresponding tog1

(NL)(01)51
andg1

(NL)(01),1, respectively. As discussed above, it is t
second solution, shown by a dashed line in Fig. 3, which
the physically realizable one. In contrast, ifl /LaÞ0, uDnu
should be greater than some threshold value for the sec
solutionb(01).1 to appear. Threshold values ofuDnu fol-
lowing from Eq. ~41! are shown in Fig. 3 by arrows.For a
nonabsorbing, elastically scattering medium (l /La50), the value of
g1

(NL)(01) can be estimated analytically. Indeed, att/t0→0 the
principal contribution to^Dw2(t)&s is given by ^Dw2(t)&s

(2) for
s/ l !(k0l )2, and by^Dw2(t)&s

(3) for s/ l @(k0l )2. This allows us to
put ^Dw2(t)&s'^Dw2(t)&s

(2) if s/ l ,(k0l )2, and ^Dw2(t)&s

'^Dw2(t)&s
(3) if s/ l .(k0l )2. Integration in Eq.~33! can be then

carried out, and Eq.~39! is easily solved, yielding

g1
(NL)~01!.12H 2uDnu2/3, uDnu,~k0l !23/2,

3uDnuAk0l , uDnu.~k0l !23/2.
~42!

This result agrees well with the numerical solution of E
~39! presented in Fig. 3.

The physical origin of the instability of speckle pattern f
p.1 can be revealed by realizing that the system ‘‘coher
wave1 nonlinear disordered medium’’ has a positive thre
dimensional feedback. In a nonlinear medium, an infinit

FIG. 3. ‘‘Bifurcation diagram’’ for a wave scattered in a sem
infinite nonlinear disordered medium. Solid lines show the tempo
autocorrelation function of diffusely reflected wave att/t0→0 ~im-
mobile scatterers! for k0l 5100 and the values ofl /La indicated
near each curve~dashed line is forl /La50). The threshold values
of uDnu following from Eq. ~41! are shown by arrows.g1

(NL)(01)
,1 corresponds to spontaneous fluctuations of scattered w
which is a manifestation of the speckle pattern instability. Dot
line is the linear resultg1

(NL)(01)51.
4-9
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S. E. SKIPETROV PHYSICAL REVIEW E 63 056614
small perturbation of the wave intensityI (r ,t) produces a
change of the local refractive index, which alters the pha
of waves propagating in the medium and, consequently,
fects their mutual interference. Since it is this interferen
that determinesI (r ,t), the loop of the feedback is close
For p*1, the feedback is sufficiently strong to compens
for the ~diffusive on average! spreading of the initial inten-
sity perturbation, and the speckle patternI (r ,t) is unstable. It
is worthwhile to note that unstable regimes are not exc
tional in nonlinear wave systems and, in particular, in opti
systems~see, e.g., Refs.@72–76#!.

Our Eq. ~39! is in no way limited to the case oft/t0

→0, and can be used to compute the temporal autocorr
tion function of diffusely reflected wave at anyt/t0.0. In
the latter case, one should take into account all the f
dephasing terms given by Eqs.~5! and~36!–~38!. The results
of the numerical solution of Eq.~39! are shown in Fig. 4. For
weak absorption (l /La50,1023), p.1 and the speckle pat
tern is unstable@g1

(NL)(01),1#. As t/t0 increases, the dif-
ference between the ‘‘nonlinear’’ and ‘‘linear’’ curves be
comes less pronounced. For strong absorption (l /La55
31023), p becomes less than unity and stability of t
speckle pattern is recovered@g1

(NL)(01)51#. We remind
that the temporal autocorrelation functiong1

(L)(t), corre-
sponding to a linear medium, always equals 1 fort/t050,
as shown by dashed lines in Fig. 4.

It is instructive to compare the results obtained using
perturbation theory of Sec. V and the self-consistent
proach of Sec. VI. Such a comparison is shown in Fig.
The two upper curves, corresponding to relatively strong
sorption (l /La5531023,p,1), are almost indistinguish
able, which means that forp,1, the perturbation theory
works very well. In contrast, forp.1 ~see the two lower
curves of Fig. 5, corresponding tol /La50), the perturbation
and the self-consistent curves are close only at the right f
the dotted vertical line, showing the minimum timetc at
which the perturbation theory is valid@see Eq.~34!#. For t
&tc , the perturbation and the self-consistent results disag

FIG. 4. The same as Fig. 1, but using a self-consistent appro
instead of the perturbation theory. For the two lower curv
g1

(NL)(01),1 and the speckle pattern is unstable.
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significantly, which confirms our conclusion about the fa
ure of the perturbation approach at short correlation de
times.

VIII. CONCLUSION

We are now in a position to answer the two central qu
tions formulated in the introductory section:

~a! The phenomenon of multiple scattering is capable
providing a positive feedback for a coherent wave propag
ing in a nonlinear disordered medium.

~b! The onset of the speckle pattern instability occu
when the control parameter

p5Dn2S La

l D 2Fk0l 1
La

l G ~43!

becomes of order or larger than unity. The speckle patter
stable forp,1.

The instability of the multiple-scattering speckle patte
manifests itself in spontaneous fluctuations of the scatte
wave field and intensity. The following features are char
teristic for the development of the instability. First, the d
velopment of the instability is independent of the sign
nonlinearity. This is not common for nonlinear waves sin
the instability is often due to self-focusing phenomen
which only occur for n2.0 @72–76#. The instability of
waves in adisorderednonlinear medium has nothing to d
with the self-focusing, and occurs at relatively weak nonl
earities, when the self-focusing can be neglected. Secon
the absence of absorption, the speckle pattern is unstabl
any ~even infinitely small! value of the nonlinearity strength
uDnu, while in a dissipative mediumuDnu should exceed a
certain threshold value for the instability to show up. Final
the instability results in a value of the autocorrelation fun

ch
,

FIG. 5. Comparison of the normalized temporal autocorrelat
functions calculated using a self-consistent~solid lines! and pertur-
bation ~dashed lines! theories. Dotted vertical line indicates th
limit tc of validity of the perturbation theory forl /La50. The
perturbation theory is valid only fort.tc , while for t,tc the
perturbation result deviates significantly from the self-consistent
lution. For sufficiently strong absorption (l /La5531023), the per-
turbation theory holds at anyt: the perturbation and the self
consistent results are indistinguishable.
4-10
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tion g1
(NL)(t) of scattered wave, which is smaller than 1 f

t/t0→0 ~i.e., in the absence of scatterer motion!. This is a
clear signature of spontaneous fluctuations of the multip
scattered speckle pattern, and should be observable in ex
ments.
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APPENDIX A: SPATIOTEMPORAL FIELD
CORRELATION IN A LINEAR MEDIUM

In this appendix, we provide a derivation of the sp
tiotemporal correlation function, Cc(r ,Dr ,t)5^c(r
2Dr /2,t)c* (r1Dr /2,t1t)&, of a random fieldc(r ,t) in
the bulk of disordered medium. Starting from the linear wa
equation@Eq. ~1! with «250#, we obtain the Bethe-Salpete
equation in the form@11,80,8#:

Cc~r ,Dr ,t!

5^c~r2Dr /2,t !&^c* ~r1Dr /2,t !&

1E draE drbE dr cE drdḠ~r2Dr /2,ra!

3Ḡ* ~r1Dr /2,rb!U~ra ,rb ,r c ,rd!

3Cc@~r c1rd!/2,rd2r c ,t#, ~A1!

where the integrations are over the volume of disorde
medium,Ḡ is the average Green function of the linear wa
equation, andU is the irreducible four-point vertex. Fa
enough from the medium boundaries, we can replaceḠ by
its value in the infinite medium:

Ḡ~r1 ,r2!52
1

4pur12r2u
expF S ik2

1

2l D ur12r2uG .
~A2!

Now we assume that point scatterers in the medium
dergo Brownian motion, and that the correlation function
the dielectric function fluctuations is given by Eq.~3!. For
t!t0, we can neglect thet dependence ofU in Eq. ~A1!,
which in the limit of kl@1 becomes

U~ra ,rb ,r c ,rd!5
4p

l
d~ra2r c!d~rb2rd!d~ra2rb!.

~A3!

Equation~A1! then reduces to

Cc~r ,Dr ,t!5
4p

l E draḠ~r2Dr /2,ra!

3Ḡ* ~r1Dr /2,ra!Cc~ra ,0,t!, ~A4!

where we assumed the coherent field^c(r ,t)& to be negli-
gible.
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Now we remind thatCc(ra ,0,t)[Cc(ra ,t) is a slow-
varying function ofra . We can therefore pull it out of the
integral in Eq.~A4!, taking its value atr . Performing the
remaining integral, we find

Cc~r ,Dr ,t!5
sin~kDr !

kDr
expS 2

Dr

2l DCc~r ,t!. ~A5!

This equation relates the spatiotemporal correlation of
field with its purely temporal correlation. Equation~A5!
holds for any sample geometry and source distribution,
enough from boundaries and sources, and fort!t0. In the
case of a plane wave incident at the surfacez50 of a semi-
infinite disordered medium, occupying thez.0 half-space,

Cc~r ,t!5I 0exp@2a~t!~z/ l !# ~A6!

with a2(t)53t/(2t0)1( l /La)2, leading to Eq.~9! in the
main text. In the factorization approximation~10!, the square
of Eq. ~A5! gives the short-range correlation function of i
tensity fluctuations.

APPENDIX B: LONG-RANGE SPATIOTEMPORAL
CORRELATION OF INTENSITY FLUCTUATIONS

IN A LINEAR MEDIUM

To calculate the spatiotemporal correlation function of
tensity fluctuations, CdI(r ,Dr ,t)5^dI (r2Dr /2,t)dI (r
1Dr /2,t1t)&, for Dr . l we generalize the Langevin ap
proach@9,11,90#, which has been initially developed for ca
culation of purely spatial correlations. We assume that
spatiotemporal correlation function of Langevin rando
sources is determined by the short-range correlation func
of intensity fluctuations. In the factorization approximatio
the latter is given by the square of the field-field correlati
function @Eq. ~A5!#. Hence, the generalized Langevin equ
tions read

Dp@¹221/La
2#dI ~r ,t !5divjext~r ,t !, ~B1!

^ j ext
( i ) ~r2Dr /2,t ! j ext

(m)~r1Dr /2,t1t!&

5
1

3
d im

c22p l

k2
uCc~r ,t!u2d~Dr !, ~B2!

where Dp5cl/3 is the diffusion coefficient, andc is the
speed of wave in the medium. In the case of a plane w
incident upon a boundaryz50 of a semi-infinite disordered
medium, it is convenient to make a two-dimensional Four
transform of Eq.~B1! in the $x,y% plane. Then the equation
corresponding todI (K1 ,z1 ,t1) anddI (K2 ,z2 ,t2) are multi-
plied, and the product is ensemble averaged. Further tr
formations, which are equivalent to those discussed in R
@11#, yield
4-11
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^dI ~K1 ,z1 ,t1!dI ~K2 ,z2 ,t2!&5I 0
2 6p

k2l
d~K12K2!E

0

`

dz8F ~K1•K2!G~p,z1 ,z8!G~p,z2 ,z8!

1
]

]z8
G~p,z1 ,z8!

]

]z8
G~p,z2 ,z8!GexpF22a~t!

z8

l G , ~B3!

wherep25K211/La
2 , and

G~p,z1 ,z8!52
1

p
sinh~pmin$z1 ,z8%!exp~2pmax$z1 ,z8%! ~B4!

is the Green function of Eq.~B1!. Evaluating Eq.~B3! and transforming the result back to the real space, after lengthy
straightforward algebra, we obtain

CdI~r ,Dr ,t!5
3

~kl !2
I 0

2E
0

`

dK K QS K,AK21 l 2/La
2,

z

l
,
Dz

l
,a~t! D J0S K

DR

l D , ~B5!

where

Q~K,p,z,Dz,a!5exp~2pz!3F2a21K22p2

4a324ap2
2

~a22p2!~2K21p2!1a2~K21p2!cosh~2pz1!1ap~K21p2!sinh~2pz1!

4a exp~2az1!~a22p2!p2 G
1S 11

K2

p2 D sinh~pz1!sinh~pz2!

2 exp@2~a1p!z2#~a1p!
1

exp~2pz2!sinh~pz1!

4ap2~a1p!

3ˆp~p212ap2K2!$cosh~pz2!exp@2~2a1p!z2#2cosh~pz1!exp@2~2a1p!z1#%

1~p322aK22pK2!$sinh~pz2!exp@2~2a1p!z2#2sinh~pz1!exp@2~2a1p!z1#%‰, ~B6!
al
,

in
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wherez15z2Dz/2 andz25z1Dz/2.
Equations~B5! and~B6! cannot be evaluated in a gener

form. In the limits ofa(t)z,a(t)DR/ l !1 we can, however
approximately replaceQ in Eq. ~B5! by

Q~K,p,z,Dz,a!'
1

2K
@exp~2KDz!2exp~22Kz!#

3exp@22a~t!z#, ~B7!

which yields Eq.~15! in the main text.

APPENDIX C: DENSITY OF WAVE PATHS
IN A DISORDERED MEDIUM

Propagation of waves in a disordered medium can be
terpreted in terms of partial waves traveling along vario
paths inside the medium. The spatial distribution of su
paths and their relative weights depend on the scatte
properties of the medium, and on the geometry of
sample. In the case of multiple scattering, the simplest a
at the same time, sufficiently accurate model of wave pro
gation is thediffusionmodel. According to this model, wav
paths in the medium coincide with trajectories of Browni
particles. The probabilityG(r1 ,r2 ,s) for a path of lengths to
pass fromr1 to r2 is then given by a solution of the diffusio
equation, which in the absence of absorption reads@86,89#:
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ds
G~r1 ,r2 ,s!2

1

3
l“2G~r1 ,r2 ,s!5d~r12r2!d~s!,

~C1!

where l is the mean-free-path. Commonly used bound
conditions for Eq.~C1! consist in puttingG50 at open
boundaries and“nG50 at reflecting boundaries of th
sample ~where “n denotes the normal derivative ofG).
G(r1 ,r2 ,s) is called the Green function, or the propagat
For a semi-infinite medium occupying the half-spacez.0,
one finds

G~r1 ,r2 ,s!5S 3

4p lsD 3/2H expF2
3

4ls
~DR21Dz2!G

2expF2
3

4ls
~DR21Z2!G J , ~C2!

where cylindrical coordinates are used:r i5$Ri ,zi%, DR
5R12R2 , Dz5z12z2, andZ5z11z2.

Following Ref.@86#, we introducers(r1 ,r2 ,r3), theden-
sity distributionof paths of lengths, as a number of visits of
a given siter2 insided3r2 in the ensemble of paths of lengt
s starting atr1 and ending atr3, over the total length of the
ensemble distinct paths:
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rs~r1 ,r2 ,r3!5
1

sG~r1 ,r3 ,s!

3E
0

s

dpG~r1 ,r 2,p!G~r2 ,r3 ,s2p!.

~C3!

rs(r1 ,r2 ,r3) describes the probability density for a path o
given length s, starting at r1 and ending atr3, to pass
throughr2. This quantity is normalized:

E d3r2rs~r1 ,r2 ,r3!51, ~C4!

where the integration is performed over the volume of dis
dered medium.

As the Green functionG is known @Eq. ~C2!#, the calcu-
lation of rs(r1 ,r2 ,r3) is straightforward. For diffusely re
flected paths, assuming that the first and the last scatte
events take place atz5 l , we obtain

rs~ l ,r ,l ![rs~r !5
1

A

6z

ls
expS 2

3z2

ls D , ~C5!

where A→` is the surface of the semi-infinite medium
Equation~C5! defines the probability density for a diffuse
reflected path of lengths to pass through a vicinity of som
point r5$x,y,z%.

Generalizing definition ofrs , we define the probability
density for a path of lengths starting atr1 and ending atr4 to
pass consequently throughr2 and r3:

rs~r1 ,r2 ,r3 ,r4!5
2

s2G~r1 ,r4 ,s!
E

0

s

dp

3E
0

s2p

dqG~r1 ,r 2,p!G~r2 ,r3 ,q!

3G~r3 ,r4 ,s2p2q!. ~C6!
d

-

g
,

d

m
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The normalization of Eq.~C6! is

E d3r2E d3r3rs~r1 ,r2 ,r3 ,r4!51. ~C7!

For a semi-infinite medium, we get

rs~ l ,r ,r 8,l ![rs~r ,r 8!5
1

A2

9

2p l 2s2

3H Z1ADR21Dz2

ADR21Dz2

3expF2
3

4ls
~Z1ADR21Dz2!2G

2
Z1ADR21Z2

ADR21Z2

3expF2
3

4ls
~Z1ADR21Z2!2G J , ~C8!

wherer5$R,z%,DR5R2R8,Dz5z2z8,Z5z1z8.
Although Eqs.~C5! and~C8! have been found for a non

absorbing medium, it is easy to show that these results h
in the presence ofspatially-homogeneousabsorption as well.
This stems from the fact that the attenuation of wave in
homogeneously absorbing medium depends only on the
length, while being independent of the pathgeometry. As a
consequence, the Green function@Eq. ~C2!# should be mul-
tiplied by a factor exp(2s/la), where l a is the absorption
length. This factor, however, disappears after the substitu
of the Green function~C2! in Eqs. ~C3! and ~C6!. Conse-
quently,rs(r ) andrs(r ,r 8) are independent ofl a and remain
unchanged.
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